Solve for x
x\neq 0
z=y+1\text{ and }x\neq 0
Solve for y
y=z-1
x\neq 0
Share
Copied to clipboard
zx=x+xy
Variable x cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by x.
zx-x=xy
Subtract x from both sides.
zx-x-xy=0
Subtract xy from both sides.
\left(z-1-y\right)x=0
Combine all terms containing x.
\left(-y+z-1\right)x=0
The equation is in standard form.
x=0
Divide 0 by z-1-y.
x\in \emptyset
Variable x cannot be equal to 0.
zx=x+xy
Multiply both sides of the equation by x.
x+xy=zx
Swap sides so that all variable terms are on the left hand side.
xy=zx-x
Subtract x from both sides.
xy=xz-x
The equation is in standard form.
\frac{xy}{x}=\frac{x\left(z-1\right)}{x}
Divide both sides by x.
y=\frac{x\left(z-1\right)}{x}
Dividing by x undoes the multiplication by x.
y=z-1
Divide x\left(-1+z\right) by x.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}