Solve for x (complex solution)
x=e^{\frac{arg(z)Im(\ln(y-2))+iarg(z)Re(\ln(y-2))}{\left(Re(\ln(y-2))\right)^{2}+\left(Im(\ln(y-2))\right)^{2}}-\frac{2\pi n_{1}iRe(\ln(y-2))}{\left(Re(\ln(y-2))\right)^{2}+\left(Im(\ln(y-2))\right)^{2}}-\frac{2\pi n_{1}Im(\ln(y-2))}{\left(Re(\ln(y-2))\right)^{2}+\left(Im(\ln(y-2))\right)^{2}}}\left(|z|\right)^{\frac{Re(\ln(y-2))-iIm(\ln(y-2))}{\left(Re(\ln(y-2))\right)^{2}+\left(Im(\ln(y-2))\right)^{2}}}
n_{1}\in \mathrm{Z}
y\neq 2
Solve for y
\left\{\begin{matrix}y=z^{\frac{1}{\ln(\arctan(x))}}+2\text{, }&z^{\frac{1}{\ln(\arctan(x))}}+2>2\text{ and }\arctan(x)>0\text{ and }x\neq \tan(1)\text{ and }z>0\\y\in \mathrm{R}\text{, }&x=-\tan(1)\text{ and }z=-1\text{ and }Denominator(\ln(y-2))\text{bmod}2=1\text{ and }Numerator(\ln(y-2))\text{bmod}2=1\text{ and }y>2\\y>3\text{, }&x=0\text{ and }z=0\\y>2\text{, }&z=1\text{ and }x=\tan(1)\end{matrix}\right.
Share
Copied to clipboard
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}