Solve for a
a=\left(2+i\right)z+i
Solve for z
z=\left(\frac{2}{5}-\frac{1}{5}i\right)a+\left(-\frac{1}{5}-\frac{2}{5}i\right)
Share
Copied to clipboard
z=\frac{a}{2+i}+\frac{-i}{2+i}
Divide each term of a-i by 2+i to get \frac{a}{2+i}+\frac{-i}{2+i}.
z=\frac{a}{2+i}+\frac{-i\left(2-i\right)}{\left(2+i\right)\left(2-i\right)}
Multiply both numerator and denominator of \frac{-i}{2+i} by the complex conjugate of the denominator, 2-i.
z=\frac{a}{2+i}+\frac{-1-2i}{5}
Do the multiplications in \frac{-i\left(2-i\right)}{\left(2+i\right)\left(2-i\right)}.
z=\frac{a}{2+i}+\left(-\frac{1}{5}-\frac{2}{5}i\right)
Divide -1-2i by 5 to get -\frac{1}{5}-\frac{2}{5}i.
\frac{a}{2+i}+\left(-\frac{1}{5}-\frac{2}{5}i\right)=z
Swap sides so that all variable terms are on the left hand side.
\frac{a}{2+i}=z+\left(\frac{1}{5}+\frac{2}{5}i\right)
Add \frac{1}{5}+\frac{2}{5}i to both sides.
\left(\frac{2}{5}-\frac{1}{5}i\right)a=z+\left(\frac{1}{5}+\frac{2}{5}i\right)
The equation is in standard form.
\frac{\left(\frac{2}{5}-\frac{1}{5}i\right)a}{\frac{2}{5}-\frac{1}{5}i}=\frac{z+\left(\frac{1}{5}+\frac{2}{5}i\right)}{\frac{2}{5}-\frac{1}{5}i}
Divide both sides by \frac{2}{5}-\frac{1}{5}i.
a=\frac{z+\left(\frac{1}{5}+\frac{2}{5}i\right)}{\frac{2}{5}-\frac{1}{5}i}
Dividing by \frac{2}{5}-\frac{1}{5}i undoes the multiplication by \frac{2}{5}-\frac{1}{5}i.
a=\left(2+i\right)z+i
Divide z+\left(\frac{1}{5}+\frac{2}{5}i\right) by \frac{2}{5}-\frac{1}{5}i.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}