Skip to main content
Solve for a
Tick mark Image
Solve for z
Tick mark Image

Similar Problems from Web Search

Share

z=\frac{a}{2+i}+\frac{-i}{2+i}
Divide each term of a-i by 2+i to get \frac{a}{2+i}+\frac{-i}{2+i}.
z=\frac{a}{2+i}+\frac{-i\left(2-i\right)}{\left(2+i\right)\left(2-i\right)}
Multiply both numerator and denominator of \frac{-i}{2+i} by the complex conjugate of the denominator, 2-i.
z=\frac{a}{2+i}+\frac{-1-2i}{5}
Do the multiplications in \frac{-i\left(2-i\right)}{\left(2+i\right)\left(2-i\right)}.
z=\frac{a}{2+i}+\left(-\frac{1}{5}-\frac{2}{5}i\right)
Divide -1-2i by 5 to get -\frac{1}{5}-\frac{2}{5}i.
\frac{a}{2+i}+\left(-\frac{1}{5}-\frac{2}{5}i\right)=z
Swap sides so that all variable terms are on the left hand side.
\frac{a}{2+i}=z+\left(\frac{1}{5}+\frac{2}{5}i\right)
Add \frac{1}{5}+\frac{2}{5}i to both sides.
\left(\frac{2}{5}-\frac{1}{5}i\right)a=z+\left(\frac{1}{5}+\frac{2}{5}i\right)
The equation is in standard form.
\frac{\left(\frac{2}{5}-\frac{1}{5}i\right)a}{\frac{2}{5}-\frac{1}{5}i}=\frac{z+\left(\frac{1}{5}+\frac{2}{5}i\right)}{\frac{2}{5}-\frac{1}{5}i}
Divide both sides by \frac{2}{5}-\frac{1}{5}i.
a=\frac{z+\left(\frac{1}{5}+\frac{2}{5}i\right)}{\frac{2}{5}-\frac{1}{5}i}
Dividing by \frac{2}{5}-\frac{1}{5}i undoes the multiplication by \frac{2}{5}-\frac{1}{5}i.
a=\left(2+i\right)z+i
Divide z+\left(\frac{1}{5}+\frac{2}{5}i\right) by \frac{2}{5}-\frac{1}{5}i.