Skip to main content
Solve for j
Tick mark Image
Solve for z
Tick mark Image

Similar Problems from Web Search

Share

z=\left(\frac{1}{2}+\frac{1}{2}i\right)\left(1-ji\right)
Divide i\left(1-ji\right) by 1+i to get \left(\frac{1}{2}+\frac{1}{2}i\right)\left(1-ji\right).
\left(\frac{1}{2}+\frac{1}{2}i\right)\left(1-ji\right)=z
Swap sides so that all variable terms are on the left hand side.
\left(\frac{1}{2}+\frac{1}{2}i\right)\left(1-ij\right)=z
Multiply -1 and i to get -i.
\frac{1}{2}+\frac{1}{2}i+\left(\frac{1}{2}-\frac{1}{2}i\right)j=z
Use the distributive property to multiply \frac{1}{2}+\frac{1}{2}i by 1-ij.
\left(\frac{1}{2}-\frac{1}{2}i\right)j=z-\left(\frac{1}{2}+\frac{1}{2}i\right)
Subtract \frac{1}{2}+\frac{1}{2}i from both sides.
\left(\frac{1}{2}-\frac{1}{2}i\right)j=z+\left(-\frac{1}{2}-\frac{1}{2}i\right)
The equation is in standard form.
\frac{\left(\frac{1}{2}-\frac{1}{2}i\right)j}{\frac{1}{2}-\frac{1}{2}i}=\frac{z+\left(-\frac{1}{2}-\frac{1}{2}i\right)}{\frac{1}{2}-\frac{1}{2}i}
Divide both sides by \frac{1}{2}-\frac{1}{2}i.
j=\frac{z+\left(-\frac{1}{2}-\frac{1}{2}i\right)}{\frac{1}{2}-\frac{1}{2}i}
Dividing by \frac{1}{2}-\frac{1}{2}i undoes the multiplication by \frac{1}{2}-\frac{1}{2}i.
j=\left(1+i\right)z-i
Divide z+\left(-\frac{1}{2}-\frac{1}{2}i\right) by \frac{1}{2}-\frac{1}{2}i.
z=\left(\frac{1}{2}+\frac{1}{2}i\right)\left(1-ji\right)
Divide i\left(1-ji\right) by 1+i to get \left(\frac{1}{2}+\frac{1}{2}i\right)\left(1-ji\right).
z=\left(\frac{1}{2}+\frac{1}{2}i\right)\left(1-ij\right)
Multiply -1 and i to get -i.
z=\frac{1}{2}+\frac{1}{2}i+\left(\frac{1}{2}-\frac{1}{2}i\right)j
Use the distributive property to multiply \frac{1}{2}+\frac{1}{2}i by 1-ij.