Solve for j
j=\left(1+i\right)z-i
Solve for z
z=\left(\frac{1}{2}-\frac{1}{2}i\right)j+\left(\frac{1}{2}+\frac{1}{2}i\right)
Share
Copied to clipboard
z=\left(\frac{1}{2}+\frac{1}{2}i\right)\left(1-ji\right)
Divide i\left(1-ji\right) by 1+i to get \left(\frac{1}{2}+\frac{1}{2}i\right)\left(1-ji\right).
\left(\frac{1}{2}+\frac{1}{2}i\right)\left(1-ji\right)=z
Swap sides so that all variable terms are on the left hand side.
\left(\frac{1}{2}+\frac{1}{2}i\right)\left(1-ij\right)=z
Multiply -1 and i to get -i.
\frac{1}{2}+\frac{1}{2}i+\left(\frac{1}{2}-\frac{1}{2}i\right)j=z
Use the distributive property to multiply \frac{1}{2}+\frac{1}{2}i by 1-ij.
\left(\frac{1}{2}-\frac{1}{2}i\right)j=z-\left(\frac{1}{2}+\frac{1}{2}i\right)
Subtract \frac{1}{2}+\frac{1}{2}i from both sides.
\left(\frac{1}{2}-\frac{1}{2}i\right)j=z+\left(-\frac{1}{2}-\frac{1}{2}i\right)
The equation is in standard form.
\frac{\left(\frac{1}{2}-\frac{1}{2}i\right)j}{\frac{1}{2}-\frac{1}{2}i}=\frac{z+\left(-\frac{1}{2}-\frac{1}{2}i\right)}{\frac{1}{2}-\frac{1}{2}i}
Divide both sides by \frac{1}{2}-\frac{1}{2}i.
j=\frac{z+\left(-\frac{1}{2}-\frac{1}{2}i\right)}{\frac{1}{2}-\frac{1}{2}i}
Dividing by \frac{1}{2}-\frac{1}{2}i undoes the multiplication by \frac{1}{2}-\frac{1}{2}i.
j=\left(1+i\right)z-i
Divide z+\left(-\frac{1}{2}-\frac{1}{2}i\right) by \frac{1}{2}-\frac{1}{2}i.
z=\left(\frac{1}{2}+\frac{1}{2}i\right)\left(1-ji\right)
Divide i\left(1-ji\right) by 1+i to get \left(\frac{1}{2}+\frac{1}{2}i\right)\left(1-ji\right).
z=\left(\frac{1}{2}+\frac{1}{2}i\right)\left(1-ij\right)
Multiply -1 and i to get -i.
z=\frac{1}{2}+\frac{1}{2}i+\left(\frac{1}{2}-\frac{1}{2}i\right)j
Use the distributive property to multiply \frac{1}{2}+\frac{1}{2}i by 1-ij.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}