Solve for b
\left\{\begin{matrix}b=-\frac{a}{-z+c-1}\text{, }&a\neq 0\text{ and }z\neq c-1\\b\neq 0\text{, }&a=0\text{ and }z=c-1\end{matrix}\right.
Solve for a
a=b\left(z-c+1\right)
b\neq 0
Share
Copied to clipboard
zb=a-b+bc
Variable b cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by b.
zb+b=a+bc
Add b to both sides.
zb+b-bc=a
Subtract bc from both sides.
\left(z+1-c\right)b=a
Combine all terms containing b.
\left(z-c+1\right)b=a
The equation is in standard form.
\frac{\left(z-c+1\right)b}{z-c+1}=\frac{a}{z-c+1}
Divide both sides by z+1-c.
b=\frac{a}{z-c+1}
Dividing by z+1-c undoes the multiplication by z+1-c.
b=\frac{a}{z-c+1}\text{, }b\neq 0
Variable b cannot be equal to 0.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}