Solve for m
m=\frac{2z\left(3bx+x+b\right)}{9b}
b\neq 0\text{ and }x\neq 0\text{ and }\left(x=-\frac{1}{3}\text{ or }b\neq -\frac{x}{3x+1}\right)
Solve for b
\left\{\begin{matrix}b=\frac{2xz}{9m-2z-6xz}\text{, }&\left(z=\frac{9m}{2}\text{ and }m\neq 0\text{ and }x\neq 0\text{ and }x\neq -\frac{1}{3}\right)\text{ or }\left(m\neq 0\text{ and }x\neq 0\text{ and }x\neq -\frac{1}{3}\text{ and }z\neq \frac{9m}{2\left(3x+1\right)}\text{ and }z\neq 0\text{ and }m\neq \frac{2xz}{3}+\frac{2z}{9}\right)\text{ or }\left(m\neq 0\text{ and }x=-\frac{1}{3}\text{ and }z\neq 0\right)\\b\in \mathrm{R}\setminus -\frac{x}{3x+1}\text{, }x\neq 0\text{ and }x\neq -\frac{1}{3},0\text{, }&x\neq 0\text{ and }z=0\text{ and }m=0\end{matrix}\right.
Share
Copied to clipboard
z=\frac{9}{2}\times \frac{\frac{m}{x}}{\frac{b+x}{bx}+3}
Cancel out b in both numerator and denominator.
z=\frac{9}{2}\times \frac{\frac{m}{x}}{\frac{b+x}{bx}+\frac{3bx}{bx}}
To add or subtract expressions, expand them to make their denominators the same. Multiply 3 times \frac{bx}{bx}.
z=\frac{9}{2}\times \frac{\frac{m}{x}}{\frac{b+x+3bx}{bx}}
Since \frac{b+x}{bx} and \frac{3bx}{bx} have the same denominator, add them by adding their numerators.
z=\frac{9}{2}\times \frac{\frac{m}{x}}{\frac{3bx+x+b}{bx}}
Combine like terms in b+x+3bx.
z=\frac{9}{2}\times \frac{mbx}{x\left(3bx+x+b\right)}
Divide \frac{m}{x} by \frac{3bx+x+b}{bx} by multiplying \frac{m}{x} by the reciprocal of \frac{3bx+x+b}{bx}.
z=\frac{9}{2}\times \frac{bm}{3bx+x+b}
Cancel out x in both numerator and denominator.
z=\frac{9bm}{2\left(3bx+x+b\right)}
Multiply \frac{9}{2} times \frac{bm}{3bx+x+b} by multiplying numerator times numerator and denominator times denominator.
z=\frac{9bm}{6xb+2x+2b}
Use the distributive property to multiply 2 by 3bx+x+b.
\frac{9bm}{6xb+2x+2b}=z
Swap sides so that all variable terms are on the left hand side.
9bm=z\times 2\left(3bx+x+b\right)
Multiply both sides of the equation by 2\left(3bx+x+b\right).
9bm=2z\left(3bx+x+b\right)
Reorder the terms.
9bm=6xzb+2zx+2zb
Use the distributive property to multiply 2z by 3bx+x+b.
9bm=6bxz+2xz+2bz
The equation is in standard form.
\frac{9bm}{9b}=\frac{2z\left(3bx+x+b\right)}{9b}
Divide both sides by 9b.
m=\frac{2z\left(3bx+x+b\right)}{9b}
Dividing by 9b undoes the multiplication by 9b.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}