Solve for a
a=\frac{3z-2}{2z+3}
z\neq -\frac{3}{2}
Solve for z
z=\frac{3a+2}{3-2a}
a\neq \frac{3}{2}
Share
Copied to clipboard
z\left(-2a+3\right)=3a+2
Variable a cannot be equal to \frac{3}{2} since division by zero is not defined. Multiply both sides of the equation by -2a+3.
-2za+3z=3a+2
Use the distributive property to multiply z by -2a+3.
-2za+3z-3a=2
Subtract 3a from both sides.
-2za-3a=2-3z
Subtract 3z from both sides.
\left(-2z-3\right)a=2-3z
Combine all terms containing a.
\frac{\left(-2z-3\right)a}{-2z-3}=\frac{2-3z}{-2z-3}
Divide both sides by -2z-3.
a=\frac{2-3z}{-2z-3}
Dividing by -2z-3 undoes the multiplication by -2z-3.
a=-\frac{2-3z}{2z+3}
Divide 2-3z by -2z-3.
a=-\frac{2-3z}{2z+3}\text{, }a\neq \frac{3}{2}
Variable a cannot be equal to \frac{3}{2}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}