Solve for x (complex solution)
x=\frac{y^{6}}{\left(-zy^{2}+\ln(5)y^{2}+3\right)^{3}}
arg(\frac{y^{2}}{-zy^{2}+\ln(5)y^{2}+3})<\frac{2\pi }{3}\text{ and }y\neq 0\text{ and }-zy^{2}+\ln(5)y^{2}+3\neq 0\text{ and }z\neq \ln(5)+\frac{3}{y^{2}}
Solve for y (complex solution)
y=-\sqrt{3}i\left(-\sqrt[3]{x}z+\ln(5)\sqrt[3]{x}-1\right)^{-\frac{1}{2}}\sqrt[6]{x}
y=\sqrt{3}i\left(-\sqrt[3]{x}z+\ln(5)\sqrt[3]{x}-1\right)^{-\frac{1}{2}}\sqrt[6]{x}\text{, }x\neq 0\text{ and }z\neq \ln(5)-x^{-\frac{1}{3}}
Solve for x
x=\frac{y^{6}}{\left(-zy^{2}+\ln(5)y^{2}+3\right)^{3}}
z\neq \ln(5)+\frac{3}{y^{2}}\text{ and }y\neq 0\text{ and }-zy^{2}+\ln(5)y^{2}+3\neq 0
Solve for y
y=\sqrt{3}\sqrt[6]{-\frac{x}{\left(-\sqrt[3]{x}z+\ln(5)\sqrt[3]{x}-1\right)^{3}}}
y=-\sqrt{3}\sqrt[6]{-\frac{x}{\left(-\sqrt[3]{x}z+\ln(5)\sqrt[3]{x}-1\right)^{3}}}\text{, }x\neq 0\text{ and }z\geq \frac{\ln(5)\sqrt[3]{x}-1}{\sqrt[3]{x}}\text{ and }z\neq \ln(5)-\frac{1}{\sqrt[3]{x}}
Share
Copied to clipboard
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}