Solve for b
b=\left(-2+i\right)z-2i
Solve for z
z=\left(-\frac{2}{5}-\frac{1}{5}i\right)b+\left(\frac{2}{5}-\frac{4}{5}i\right)
Share
Copied to clipboard
z=\frac{2}{1+2i}-\frac{bi}{1+2i}
Divide each term of 2-bi by 1+2i to get \frac{2}{1+2i}-\frac{bi}{1+2i}.
z=\frac{2\left(1-2i\right)}{\left(1+2i\right)\left(1-2i\right)}-\frac{bi}{1+2i}
Multiply both numerator and denominator of \frac{2}{1+2i} by the complex conjugate of the denominator, 1-2i.
z=\frac{2-4i}{5}-\frac{bi}{1+2i}
Do the multiplications in \frac{2\left(1-2i\right)}{\left(1+2i\right)\left(1-2i\right)}.
z=\frac{2}{5}-\frac{4}{5}i-\frac{bi}{1+2i}
Divide 2-4i by 5 to get \frac{2}{5}-\frac{4}{5}i.
z=\frac{2}{5}-\frac{4}{5}i-b\left(\frac{2}{5}+\frac{1}{5}i\right)
Divide bi by 1+2i to get b\left(\frac{2}{5}+\frac{1}{5}i\right).
\frac{2}{5}-\frac{4}{5}i-b\left(\frac{2}{5}+\frac{1}{5}i\right)=z
Swap sides so that all variable terms are on the left hand side.
-b\left(\frac{2}{5}+\frac{1}{5}i\right)=z-\left(\frac{2}{5}-\frac{4}{5}i\right)
Subtract \frac{2}{5}-\frac{4}{5}i from both sides.
\left(-\frac{2}{5}-\frac{1}{5}i\right)b=z-\left(\frac{2}{5}-\frac{4}{5}i\right)
Multiply -1 and \frac{2}{5}+\frac{1}{5}i to get -\frac{2}{5}-\frac{1}{5}i.
\left(-\frac{2}{5}-\frac{1}{5}i\right)b=z+\left(-\frac{2}{5}+\frac{4}{5}i\right)
Multiply -1 and \frac{2}{5}-\frac{4}{5}i to get -\frac{2}{5}+\frac{4}{5}i.
\frac{\left(-\frac{2}{5}-\frac{1}{5}i\right)b}{-\frac{2}{5}-\frac{1}{5}i}=\frac{z+\left(-\frac{2}{5}+\frac{4}{5}i\right)}{-\frac{2}{5}-\frac{1}{5}i}
Divide both sides by -\frac{2}{5}-\frac{1}{5}i.
b=\frac{z+\left(-\frac{2}{5}+\frac{4}{5}i\right)}{-\frac{2}{5}-\frac{1}{5}i}
Dividing by -\frac{2}{5}-\frac{1}{5}i undoes the multiplication by -\frac{2}{5}-\frac{1}{5}i.
b=\left(-2+i\right)z-2i
Divide z+\left(-\frac{2}{5}+\frac{4}{5}i\right) by -\frac{2}{5}-\frac{1}{5}i.
z=\frac{2}{1+2i}-\frac{bi}{1+2i}
Divide each term of 2-bi by 1+2i to get \frac{2}{1+2i}-\frac{bi}{1+2i}.
z=\frac{2\left(1-2i\right)}{\left(1+2i\right)\left(1-2i\right)}-\frac{bi}{1+2i}
Multiply both numerator and denominator of \frac{2}{1+2i} by the complex conjugate of the denominator, 1-2i.
z=\frac{2-4i}{5}-\frac{bi}{1+2i}
Do the multiplications in \frac{2\left(1-2i\right)}{\left(1+2i\right)\left(1-2i\right)}.
z=\frac{2}{5}-\frac{4}{5}i-\frac{bi}{1+2i}
Divide 2-4i by 5 to get \frac{2}{5}-\frac{4}{5}i.
z=\frac{2}{5}-\frac{4}{5}i-b\left(\frac{2}{5}+\frac{1}{5}i\right)
Divide bi by 1+2i to get b\left(\frac{2}{5}+\frac{1}{5}i\right).
z=\frac{2}{5}-\frac{4}{5}i+\left(-\frac{2}{5}-\frac{1}{5}i\right)b
Multiply -1 and \frac{2}{5}+\frac{1}{5}i to get -\frac{2}{5}-\frac{1}{5}i.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}