Skip to main content
Solve for b
Tick mark Image
Solve for z
Tick mark Image

Similar Problems from Web Search

Share

z=\frac{2}{1+2i}-\frac{bi}{1+2i}
Divide each term of 2-bi by 1+2i to get \frac{2}{1+2i}-\frac{bi}{1+2i}.
z=\frac{2\left(1-2i\right)}{\left(1+2i\right)\left(1-2i\right)}-\frac{bi}{1+2i}
Multiply both numerator and denominator of \frac{2}{1+2i} by the complex conjugate of the denominator, 1-2i.
z=\frac{2-4i}{5}-\frac{bi}{1+2i}
Do the multiplications in \frac{2\left(1-2i\right)}{\left(1+2i\right)\left(1-2i\right)}.
z=\frac{2}{5}-\frac{4}{5}i-\frac{bi}{1+2i}
Divide 2-4i by 5 to get \frac{2}{5}-\frac{4}{5}i.
z=\frac{2}{5}-\frac{4}{5}i-b\left(\frac{2}{5}+\frac{1}{5}i\right)
Divide bi by 1+2i to get b\left(\frac{2}{5}+\frac{1}{5}i\right).
\frac{2}{5}-\frac{4}{5}i-b\left(\frac{2}{5}+\frac{1}{5}i\right)=z
Swap sides so that all variable terms are on the left hand side.
-b\left(\frac{2}{5}+\frac{1}{5}i\right)=z-\left(\frac{2}{5}-\frac{4}{5}i\right)
Subtract \frac{2}{5}-\frac{4}{5}i from both sides.
\left(-\frac{2}{5}-\frac{1}{5}i\right)b=z-\left(\frac{2}{5}-\frac{4}{5}i\right)
Multiply -1 and \frac{2}{5}+\frac{1}{5}i to get -\frac{2}{5}-\frac{1}{5}i.
\left(-\frac{2}{5}-\frac{1}{5}i\right)b=z+\left(-\frac{2}{5}+\frac{4}{5}i\right)
Multiply -1 and \frac{2}{5}-\frac{4}{5}i to get -\frac{2}{5}+\frac{4}{5}i.
\frac{\left(-\frac{2}{5}-\frac{1}{5}i\right)b}{-\frac{2}{5}-\frac{1}{5}i}=\frac{z+\left(-\frac{2}{5}+\frac{4}{5}i\right)}{-\frac{2}{5}-\frac{1}{5}i}
Divide both sides by -\frac{2}{5}-\frac{1}{5}i.
b=\frac{z+\left(-\frac{2}{5}+\frac{4}{5}i\right)}{-\frac{2}{5}-\frac{1}{5}i}
Dividing by -\frac{2}{5}-\frac{1}{5}i undoes the multiplication by -\frac{2}{5}-\frac{1}{5}i.
b=\left(-2+i\right)z-2i
Divide z+\left(-\frac{2}{5}+\frac{4}{5}i\right) by -\frac{2}{5}-\frac{1}{5}i.
z=\frac{2}{1+2i}-\frac{bi}{1+2i}
Divide each term of 2-bi by 1+2i to get \frac{2}{1+2i}-\frac{bi}{1+2i}.
z=\frac{2\left(1-2i\right)}{\left(1+2i\right)\left(1-2i\right)}-\frac{bi}{1+2i}
Multiply both numerator and denominator of \frac{2}{1+2i} by the complex conjugate of the denominator, 1-2i.
z=\frac{2-4i}{5}-\frac{bi}{1+2i}
Do the multiplications in \frac{2\left(1-2i\right)}{\left(1+2i\right)\left(1-2i\right)}.
z=\frac{2}{5}-\frac{4}{5}i-\frac{bi}{1+2i}
Divide 2-4i by 5 to get \frac{2}{5}-\frac{4}{5}i.
z=\frac{2}{5}-\frac{4}{5}i-b\left(\frac{2}{5}+\frac{1}{5}i\right)
Divide bi by 1+2i to get b\left(\frac{2}{5}+\frac{1}{5}i\right).
z=\frac{2}{5}-\frac{4}{5}i+\left(-\frac{2}{5}-\frac{1}{5}i\right)b
Multiply -1 and \frac{2}{5}+\frac{1}{5}i to get -\frac{2}{5}-\frac{1}{5}i.