Solve for z
z=24
Share
Copied to clipboard
z=360-\left(4z+90+30+120\right)
Combine 2z and 2z to get 4z.
z=360-\left(4z+120+120\right)
Add 90 and 30 to get 120.
z=360-\left(4z+240\right)
Add 120 and 120 to get 240.
z=360-4z-240
To find the opposite of 4z+240, find the opposite of each term.
z=120-4z
Subtract 240 from 360 to get 120.
z+4z=120
Add 4z to both sides.
5z=120
Combine z and 4z to get 5z.
z=\frac{120}{5}
Divide both sides by 5.
z=24
Divide 120 by 5 to get 24.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}