Solve for m
m=nz+\frac{n}{y}
y\neq 0\text{ and }n\neq 0
Solve for n
\left\{\begin{matrix}n=\frac{my}{yz+1}\text{, }&m\neq 0\text{ and }y\neq 0\text{ and }z\neq -\frac{1}{y}\\n\neq 0\text{, }&z=-\frac{1}{y}\text{ and }y\neq 0\text{ and }m=0\end{matrix}\right.
Share
Copied to clipboard
nyz+n=ym
Multiply both sides of the equation by ny, the least common multiple of y,n.
ym=nyz+n
Swap sides so that all variable terms are on the left hand side.
\frac{ym}{y}=\frac{nyz+n}{y}
Divide both sides by y.
m=\frac{nyz+n}{y}
Dividing by y undoes the multiplication by y.
m=nz+\frac{n}{y}
Divide nzy+n by y.
nyz+n=ym
Variable n cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by ny, the least common multiple of y,n.
nyz+n=my
Reorder the terms.
\left(yz+1\right)n=my
Combine all terms containing n.
\frac{\left(yz+1\right)n}{yz+1}=\frac{my}{yz+1}
Divide both sides by zy+1.
n=\frac{my}{yz+1}
Dividing by zy+1 undoes the multiplication by zy+1.
n=\frac{my}{yz+1}\text{, }n\neq 0
Variable n cannot be equal to 0.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}