Skip to main content
Solve for n
Tick mark Image
Solve for z
Tick mark Image

Similar Problems from Web Search

Share

z+\frac{1}{4}=\frac{1}{4}n^{2}+\frac{11}{3}-\left(\frac{1}{4}\left(n-1\right)^{2}+\frac{2}{3}\left(n-1\right)+3\right)
Add \frac{2}{3} and 3 to get \frac{11}{3}.
z+\frac{1}{4}=\frac{1}{4}n^{2}+\frac{11}{3}-\left(\frac{1}{4}\left(n^{2}-2n+1\right)+\frac{2}{3}\left(n-1\right)+3\right)
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(n-1\right)^{2}.
z+\frac{1}{4}=\frac{1}{4}n^{2}+\frac{11}{3}-\left(\frac{1}{4}n^{2}-\frac{1}{2}n+\frac{1}{4}+\frac{2}{3}\left(n-1\right)+3\right)
Use the distributive property to multiply \frac{1}{4} by n^{2}-2n+1.
z+\frac{1}{4}=\frac{1}{4}n^{2}+\frac{11}{3}-\left(\frac{1}{4}n^{2}-\frac{1}{2}n+\frac{1}{4}+\frac{2}{3}n-\frac{2}{3}+3\right)
Use the distributive property to multiply \frac{2}{3} by n-1.
z+\frac{1}{4}=\frac{1}{4}n^{2}+\frac{11}{3}-\left(\frac{1}{4}n^{2}+\frac{1}{6}n+\frac{1}{4}-\frac{2}{3}+3\right)
Combine -\frac{1}{2}n and \frac{2}{3}n to get \frac{1}{6}n.
z+\frac{1}{4}=\frac{1}{4}n^{2}+\frac{11}{3}-\left(\frac{1}{4}n^{2}+\frac{1}{6}n-\frac{5}{12}+3\right)
Subtract \frac{2}{3} from \frac{1}{4} to get -\frac{5}{12}.
z+\frac{1}{4}=\frac{1}{4}n^{2}+\frac{11}{3}-\left(\frac{1}{4}n^{2}+\frac{1}{6}n+\frac{31}{12}\right)
Add -\frac{5}{12} and 3 to get \frac{31}{12}.
z+\frac{1}{4}=\frac{1}{4}n^{2}+\frac{11}{3}-\frac{1}{4}n^{2}-\frac{1}{6}n-\frac{31}{12}
To find the opposite of \frac{1}{4}n^{2}+\frac{1}{6}n+\frac{31}{12}, find the opposite of each term.
z+\frac{1}{4}=\frac{11}{3}-\frac{1}{6}n-\frac{31}{12}
Combine \frac{1}{4}n^{2} and -\frac{1}{4}n^{2} to get 0.
z+\frac{1}{4}=\frac{13}{12}-\frac{1}{6}n
Subtract \frac{31}{12} from \frac{11}{3} to get \frac{13}{12}.
\frac{13}{12}-\frac{1}{6}n=z+\frac{1}{4}
Swap sides so that all variable terms are on the left hand side.
-\frac{1}{6}n=z+\frac{1}{4}-\frac{13}{12}
Subtract \frac{13}{12} from both sides.
-\frac{1}{6}n=z-\frac{5}{6}
Subtract \frac{13}{12} from \frac{1}{4} to get -\frac{5}{6}.
\frac{-\frac{1}{6}n}{-\frac{1}{6}}=\frac{z-\frac{5}{6}}{-\frac{1}{6}}
Multiply both sides by -6.
n=\frac{z-\frac{5}{6}}{-\frac{1}{6}}
Dividing by -\frac{1}{6} undoes the multiplication by -\frac{1}{6}.
n=5-6z
Divide z-\frac{5}{6} by -\frac{1}{6} by multiplying z-\frac{5}{6} by the reciprocal of -\frac{1}{6}.
z+\frac{1}{4}=\frac{1}{4}n^{2}+\frac{11}{3}-\left(\frac{1}{4}\left(n-1\right)^{2}+\frac{2}{3}\left(n-1\right)+3\right)
Add \frac{2}{3} and 3 to get \frac{11}{3}.
z+\frac{1}{4}=\frac{1}{4}n^{2}+\frac{11}{3}-\left(\frac{1}{4}\left(n^{2}-2n+1\right)+\frac{2}{3}\left(n-1\right)+3\right)
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(n-1\right)^{2}.
z+\frac{1}{4}=\frac{1}{4}n^{2}+\frac{11}{3}-\left(\frac{1}{4}n^{2}-\frac{1}{2}n+\frac{1}{4}+\frac{2}{3}\left(n-1\right)+3\right)
Use the distributive property to multiply \frac{1}{4} by n^{2}-2n+1.
z+\frac{1}{4}=\frac{1}{4}n^{2}+\frac{11}{3}-\left(\frac{1}{4}n^{2}-\frac{1}{2}n+\frac{1}{4}+\frac{2}{3}n-\frac{2}{3}+3\right)
Use the distributive property to multiply \frac{2}{3} by n-1.
z+\frac{1}{4}=\frac{1}{4}n^{2}+\frac{11}{3}-\left(\frac{1}{4}n^{2}+\frac{1}{6}n+\frac{1}{4}-\frac{2}{3}+3\right)
Combine -\frac{1}{2}n and \frac{2}{3}n to get \frac{1}{6}n.
z+\frac{1}{4}=\frac{1}{4}n^{2}+\frac{11}{3}-\left(\frac{1}{4}n^{2}+\frac{1}{6}n-\frac{5}{12}+3\right)
Subtract \frac{2}{3} from \frac{1}{4} to get -\frac{5}{12}.
z+\frac{1}{4}=\frac{1}{4}n^{2}+\frac{11}{3}-\left(\frac{1}{4}n^{2}+\frac{1}{6}n+\frac{31}{12}\right)
Add -\frac{5}{12} and 3 to get \frac{31}{12}.
z+\frac{1}{4}=\frac{1}{4}n^{2}+\frac{11}{3}-\frac{1}{4}n^{2}-\frac{1}{6}n-\frac{31}{12}
To find the opposite of \frac{1}{4}n^{2}+\frac{1}{6}n+\frac{31}{12}, find the opposite of each term.
z+\frac{1}{4}=\frac{11}{3}-\frac{1}{6}n-\frac{31}{12}
Combine \frac{1}{4}n^{2} and -\frac{1}{4}n^{2} to get 0.
z+\frac{1}{4}=\frac{13}{12}-\frac{1}{6}n
Subtract \frac{31}{12} from \frac{11}{3} to get \frac{13}{12}.
z=\frac{13}{12}-\frac{1}{6}n-\frac{1}{4}
Subtract \frac{1}{4} from both sides.
z=\frac{5}{6}-\frac{1}{6}n
Subtract \frac{1}{4} from \frac{13}{12} to get \frac{5}{6}.