Solve for x
x=-\frac{2y}{3}-6
Solve for y
y=-\frac{3x}{2}-9
Graph
Share
Copied to clipboard
yx-6y-x\left(y+9\right)=54
Use the distributive property to multiply y by x-6.
yx-6y-\left(xy+9x\right)=54
Use the distributive property to multiply x by y+9.
yx-6y-xy-9x=54
To find the opposite of xy+9x, find the opposite of each term.
-6y-9x=54
Combine yx and -xy to get 0.
-9x=54+6y
Add 6y to both sides.
-9x=6y+54
The equation is in standard form.
\frac{-9x}{-9}=\frac{6y+54}{-9}
Divide both sides by -9.
x=\frac{6y+54}{-9}
Dividing by -9 undoes the multiplication by -9.
x=-\frac{2y}{3}-6
Divide 54+6y by -9.
yx-6y-x\left(y+9\right)=54
Use the distributive property to multiply y by x-6.
yx-6y-\left(xy+9x\right)=54
Use the distributive property to multiply x by y+9.
yx-6y-xy-9x=54
To find the opposite of xy+9x, find the opposite of each term.
-6y-9x=54
Combine yx and -xy to get 0.
-6y=54+9x
Add 9x to both sides.
-6y=9x+54
The equation is in standard form.
\frac{-6y}{-6}=\frac{9x+54}{-6}
Divide both sides by -6.
y=\frac{9x+54}{-6}
Dividing by -6 undoes the multiplication by -6.
y=-\frac{3x}{2}-9
Divide 54+9x by -6.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}