Solve for x
x=-\frac{y^{2}}{16}+y
y\geq 0
Solve for y
\left\{\begin{matrix}y=4\sqrt{4-x}+8\text{, }&x\leq 4\\y=-4\sqrt{4-x}+8\text{, }&x\geq 0\text{ and }x\leq 4\end{matrix}\right.
Graph
Share
Copied to clipboard
4\sqrt{y-x}=y
Swap sides so that all variable terms are on the left hand side.
\frac{4\sqrt{-x+y}}{4}=\frac{y}{4}
Divide both sides by 4.
\sqrt{-x+y}=\frac{y}{4}
Dividing by 4 undoes the multiplication by 4.
-x+y=\frac{y^{2}}{16}
Square both sides of the equation.
-x+y-y=\frac{y^{2}}{16}-y
Subtract y from both sides of the equation.
-x=\frac{y^{2}}{16}-y
Subtracting y from itself leaves 0.
-x=\frac{y\left(y-16\right)}{16}
Subtract y from \frac{y^{2}}{16}.
\frac{-x}{-1}=\frac{y\left(y-16\right)}{-16}
Divide both sides by -1.
x=\frac{y\left(y-16\right)}{-16}
Dividing by -1 undoes the multiplication by -1.
x=-\frac{y^{2}}{16}+y
Divide \frac{y\left(-16+y\right)}{16} by -1.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}