Solve for x
x=\frac{2y+1}{y+2}
y\neq -2
Solve for y
y=-\frac{2x-1}{x-2}
x\neq 2
Graph
Share
Copied to clipboard
y\left(x-2\right)=\left(x-2\right)\left(-2\right)-3
Variable x cannot be equal to 2 since division by zero is not defined. Multiply both sides of the equation by x-2.
yx-2y=\left(x-2\right)\left(-2\right)-3
Use the distributive property to multiply y by x-2.
yx-2y=-2x+4-3
Use the distributive property to multiply x-2 by -2.
yx-2y=-2x+1
Subtract 3 from 4 to get 1.
yx-2y+2x=1
Add 2x to both sides.
yx+2x=1+2y
Add 2y to both sides.
\left(y+2\right)x=1+2y
Combine all terms containing x.
\left(y+2\right)x=2y+1
The equation is in standard form.
\frac{\left(y+2\right)x}{y+2}=\frac{2y+1}{y+2}
Divide both sides by y+2.
x=\frac{2y+1}{y+2}
Dividing by y+2 undoes the multiplication by y+2.
x=\frac{2y+1}{y+2}\text{, }x\neq 2
Variable x cannot be equal to 2.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}