Solve for x
x=\frac{2500\left(y+500\right)}{50y-21}
y\neq \frac{21}{50}
Solve for y
y=\frac{21x+1250000}{50\left(x-50\right)}
x\neq 50
Graph
Share
Copied to clipboard
y\left(x-50\right)=25000+0.42x
Variable x cannot be equal to 50 since division by zero is not defined. Multiply both sides of the equation by x-50.
yx-50y=25000+0.42x
Use the distributive property to multiply y by x-50.
yx-50y-0.42x=25000
Subtract 0.42x from both sides.
yx-0.42x=25000+50y
Add 50y to both sides.
\left(y-0.42\right)x=25000+50y
Combine all terms containing x.
\left(y-\frac{21}{50}\right)x=50y+25000
The equation is in standard form.
\frac{\left(y-\frac{21}{50}\right)x}{y-\frac{21}{50}}=\frac{50y+25000}{y-\frac{21}{50}}
Divide both sides by y-\frac{21}{50}.
x=\frac{50y+25000}{y-\frac{21}{50}}
Dividing by y-\frac{21}{50} undoes the multiplication by y-\frac{21}{50}.
x=\frac{2500\left(y+500\right)}{50y-21}
Divide 25000+50y by y-\frac{21}{50}.
x=\frac{2500\left(y+500\right)}{50y-21}\text{, }x\neq 50
Variable x cannot be equal to 50.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}