Solve for x
x=\frac{5}{12}+\frac{1}{3y}
y\neq 0
Solve for y
y=\frac{4}{12x-5}
x\neq \frac{5}{12}
Graph
Share
Copied to clipboard
y\left(12x-5\right)=4
Variable x cannot be equal to \frac{5}{12} since division by zero is not defined. Multiply both sides of the equation by 12x-5.
12yx-5y=4
Use the distributive property to multiply y by 12x-5.
12yx=4+5y
Add 5y to both sides.
12yx=5y+4
The equation is in standard form.
\frac{12yx}{12y}=\frac{5y+4}{12y}
Divide both sides by 12y.
x=\frac{5y+4}{12y}
Dividing by 12y undoes the multiplication by 12y.
x=\frac{5}{12}+\frac{1}{3y}
Divide 4+5y by 12y.
x=\frac{5}{12}+\frac{1}{3y}\text{, }x\neq \frac{5}{12}
Variable x cannot be equal to \frac{5}{12}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}