Skip to main content
Solve for y
Tick mark Image
Graph

Similar Problems from Web Search

Share

y-\frac{2y+3}{3y-2}=0
Subtract \frac{2y+3}{3y-2} from both sides.
\frac{y\left(3y-2\right)}{3y-2}-\frac{2y+3}{3y-2}=0
To add or subtract expressions, expand them to make their denominators the same. Multiply y times \frac{3y-2}{3y-2}.
\frac{y\left(3y-2\right)-\left(2y+3\right)}{3y-2}=0
Since \frac{y\left(3y-2\right)}{3y-2} and \frac{2y+3}{3y-2} have the same denominator, subtract them by subtracting their numerators.
\frac{3y^{2}-2y-2y-3}{3y-2}=0
Do the multiplications in y\left(3y-2\right)-\left(2y+3\right).
\frac{3y^{2}-4y-3}{3y-2}=0
Combine like terms in 3y^{2}-2y-2y-3.
3y^{2}-4y-3=0
Variable y cannot be equal to \frac{2}{3} since division by zero is not defined. Multiply both sides of the equation by 3y-2.
y=\frac{-\left(-4\right)±\sqrt{\left(-4\right)^{2}-4\times 3\left(-3\right)}}{2\times 3}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 3 for a, -4 for b, and -3 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
y=\frac{-\left(-4\right)±\sqrt{16-4\times 3\left(-3\right)}}{2\times 3}
Square -4.
y=\frac{-\left(-4\right)±\sqrt{16-12\left(-3\right)}}{2\times 3}
Multiply -4 times 3.
y=\frac{-\left(-4\right)±\sqrt{16+36}}{2\times 3}
Multiply -12 times -3.
y=\frac{-\left(-4\right)±\sqrt{52}}{2\times 3}
Add 16 to 36.
y=\frac{-\left(-4\right)±2\sqrt{13}}{2\times 3}
Take the square root of 52.
y=\frac{4±2\sqrt{13}}{2\times 3}
The opposite of -4 is 4.
y=\frac{4±2\sqrt{13}}{6}
Multiply 2 times 3.
y=\frac{2\sqrt{13}+4}{6}
Now solve the equation y=\frac{4±2\sqrt{13}}{6} when ± is plus. Add 4 to 2\sqrt{13}.
y=\frac{\sqrt{13}+2}{3}
Divide 4+2\sqrt{13} by 6.
y=\frac{4-2\sqrt{13}}{6}
Now solve the equation y=\frac{4±2\sqrt{13}}{6} when ± is minus. Subtract 2\sqrt{13} from 4.
y=\frac{2-\sqrt{13}}{3}
Divide 4-2\sqrt{13} by 6.
y=\frac{\sqrt{13}+2}{3} y=\frac{2-\sqrt{13}}{3}
The equation is now solved.
y-\frac{2y+3}{3y-2}=0
Subtract \frac{2y+3}{3y-2} from both sides.
\frac{y\left(3y-2\right)}{3y-2}-\frac{2y+3}{3y-2}=0
To add or subtract expressions, expand them to make their denominators the same. Multiply y times \frac{3y-2}{3y-2}.
\frac{y\left(3y-2\right)-\left(2y+3\right)}{3y-2}=0
Since \frac{y\left(3y-2\right)}{3y-2} and \frac{2y+3}{3y-2} have the same denominator, subtract them by subtracting their numerators.
\frac{3y^{2}-2y-2y-3}{3y-2}=0
Do the multiplications in y\left(3y-2\right)-\left(2y+3\right).
\frac{3y^{2}-4y-3}{3y-2}=0
Combine like terms in 3y^{2}-2y-2y-3.
3y^{2}-4y-3=0
Variable y cannot be equal to \frac{2}{3} since division by zero is not defined. Multiply both sides of the equation by 3y-2.
3y^{2}-4y=3
Add 3 to both sides. Anything plus zero gives itself.
\frac{3y^{2}-4y}{3}=\frac{3}{3}
Divide both sides by 3.
y^{2}-\frac{4}{3}y=\frac{3}{3}
Dividing by 3 undoes the multiplication by 3.
y^{2}-\frac{4}{3}y=1
Divide 3 by 3.
y^{2}-\frac{4}{3}y+\left(-\frac{2}{3}\right)^{2}=1+\left(-\frac{2}{3}\right)^{2}
Divide -\frac{4}{3}, the coefficient of the x term, by 2 to get -\frac{2}{3}. Then add the square of -\frac{2}{3} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
y^{2}-\frac{4}{3}y+\frac{4}{9}=1+\frac{4}{9}
Square -\frac{2}{3} by squaring both the numerator and the denominator of the fraction.
y^{2}-\frac{4}{3}y+\frac{4}{9}=\frac{13}{9}
Add 1 to \frac{4}{9}.
\left(y-\frac{2}{3}\right)^{2}=\frac{13}{9}
Factor y^{2}-\frac{4}{3}y+\frac{4}{9}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(y-\frac{2}{3}\right)^{2}}=\sqrt{\frac{13}{9}}
Take the square root of both sides of the equation.
y-\frac{2}{3}=\frac{\sqrt{13}}{3} y-\frac{2}{3}=-\frac{\sqrt{13}}{3}
Simplify.
y=\frac{\sqrt{13}+2}{3} y=\frac{2-\sqrt{13}}{3}
Add \frac{2}{3} to both sides of the equation.