Solve for x
x=-z+\frac{1}{y}
y\neq 0\text{ and }z\neq 0
Solve for y
y=\frac{1}{x+z}
x\neq -z\text{ and }z\neq 0
Share
Copied to clipboard
yz=1-yx
Multiply both sides of the equation by z.
1-yx=yz
Swap sides so that all variable terms are on the left hand side.
-yx=yz-1
Subtract 1 from both sides.
\left(-y\right)x=yz-1
The equation is in standard form.
\frac{\left(-y\right)x}{-y}=\frac{yz-1}{-y}
Divide both sides by -y.
x=\frac{yz-1}{-y}
Dividing by -y undoes the multiplication by -y.
x=-z+\frac{1}{y}
Divide yz-1 by -y.
y-\frac{1-yx}{z}=0
Subtract \frac{1-yx}{z} from both sides.
\frac{yz}{z}-\frac{1-yx}{z}=0
To add or subtract expressions, expand them to make their denominators the same. Multiply y times \frac{z}{z}.
\frac{yz-\left(1-yx\right)}{z}=0
Since \frac{yz}{z} and \frac{1-yx}{z} have the same denominator, subtract them by subtracting their numerators.
\frac{yz-1+xy}{z}=0
Do the multiplications in yz-\left(1-yx\right).
yz-1+xy=0
Multiply both sides of the equation by z.
yz+xy=1
Add 1 to both sides. Anything plus zero gives itself.
\left(z+x\right)y=1
Combine all terms containing y.
\left(x+z\right)y=1
The equation is in standard form.
\frac{\left(x+z\right)y}{x+z}=\frac{1}{x+z}
Divide both sides by z+x.
y=\frac{1}{x+z}
Dividing by z+x undoes the multiplication by z+x.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}