Solve for y
y=-\frac{\left(4+3i\right)z+\left(-12-11i\right)}{z^{2}}
z\neq 0
Solve for z
\left\{\begin{matrix}z=\frac{\sqrt{\left(48+44i\right)y+\left(7+24i\right)}+\left(-4-3i\right)}{2y}\text{; }z=\frac{-\sqrt{\left(48+44i\right)y+\left(7+24i\right)}+\left(-4-3i\right)}{2y}\text{, }&y\neq 0\\z=\frac{81}{25}+\frac{8}{25}i\text{, }&y=0\end{matrix}\right.
Share
Copied to clipboard
yz^{2}-12-11i=\left(-4-3i\right)z
Subtract \left(4+3i\right)z from both sides. Anything subtracted from zero gives its negation.
yz^{2}-11i=\left(-4-3i\right)z+12
Add 12 to both sides.
yz^{2}=\left(-4-3i\right)z+12+11i
Add 11i to both sides.
z^{2}y=\left(-4-3i\right)z+\left(12+11i\right)
The equation is in standard form.
\frac{z^{2}y}{z^{2}}=\frac{\left(-4-3i\right)z+\left(12+11i\right)}{z^{2}}
Divide both sides by z^{2}.
y=\frac{\left(-4-3i\right)z+\left(12+11i\right)}{z^{2}}
Dividing by z^{2} undoes the multiplication by z^{2}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}