Solve for a_n (complex solution)
\left\{\begin{matrix}a_{n}=-\frac{3\left(1-n\right)}{y}\text{, }&y\neq 0\\a_{n}\in \mathrm{C}\text{, }&n=1\text{ and }y=0\end{matrix}\right.
Solve for a_n
\left\{\begin{matrix}a_{n}=-\frac{3\left(1-n\right)}{y}\text{, }&y\neq 0\\a_{n}\in \mathrm{R}\text{, }&n=1\text{ and }y=0\end{matrix}\right.
Solve for n
n=\frac{a_{n}y+3}{3}
Graph
Share
Copied to clipboard
ya_{n}=3n-3
The equation is in standard form.
\frac{ya_{n}}{y}=\frac{3n-3}{y}
Divide both sides by y.
a_{n}=\frac{3n-3}{y}
Dividing by y undoes the multiplication by y.
a_{n}=\frac{3\left(n-1\right)}{y}
Divide -3+3n by y.
ya_{n}=3n-3
The equation is in standard form.
\frac{ya_{n}}{y}=\frac{3n-3}{y}
Divide both sides by y.
a_{n}=\frac{3n-3}{y}
Dividing by y undoes the multiplication by y.
a_{n}=\frac{3\left(n-1\right)}{y}
Divide -3+3n by y.
3n-3=ya_{n}
Swap sides so that all variable terms are on the left hand side.
3n=ya_{n}+3
Add 3 to both sides.
3n=a_{n}y+3
The equation is in standard form.
\frac{3n}{3}=\frac{a_{n}y+3}{3}
Divide both sides by 3.
n=\frac{a_{n}y+3}{3}
Dividing by 3 undoes the multiplication by 3.
n=\frac{a_{n}y}{3}+1
Divide ya_{n}+3 by 3.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}