Solve for n
n=-\frac{y_{n}+1}{2\left(y_{n}-1\right)}
y_{n}\neq 1
Solve for y_n
y_{n}=-\frac{1-2n}{2n+1}
n\neq -\frac{1}{2}
Share
Copied to clipboard
y_{n}\left(2n+1\right)=2n-1
Variable n cannot be equal to -\frac{1}{2} since division by zero is not defined. Multiply both sides of the equation by 2n+1.
2y_{n}n+y_{n}=2n-1
Use the distributive property to multiply y_{n} by 2n+1.
2y_{n}n+y_{n}-2n=-1
Subtract 2n from both sides.
2y_{n}n-2n=-1-y_{n}
Subtract y_{n} from both sides.
\left(2y_{n}-2\right)n=-1-y_{n}
Combine all terms containing n.
\left(2y_{n}-2\right)n=-y_{n}-1
The equation is in standard form.
\frac{\left(2y_{n}-2\right)n}{2y_{n}-2}=\frac{-y_{n}-1}{2y_{n}-2}
Divide both sides by 2y_{n}-2.
n=\frac{-y_{n}-1}{2y_{n}-2}
Dividing by 2y_{n}-2 undoes the multiplication by 2y_{n}-2.
n=-\frac{y_{n}+1}{2\left(y_{n}-1\right)}
Divide -1-y_{n} by 2y_{n}-2.
n=-\frac{y_{n}+1}{2\left(y_{n}-1\right)}\text{, }n\neq -\frac{1}{2}
Variable n cannot be equal to -\frac{1}{2}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}