Solve for n (complex solution)
\left\{\begin{matrix}n=-\frac{2\left(y_{1}-4x_{1}\right)}{4x_{1}+y_{1}}\text{, }&y_{1}\neq -4x_{1}\\n\in \mathrm{C}\text{, }&y_{1}=0\text{ and }x_{1}=0\end{matrix}\right.
Solve for x_1 (complex solution)
\left\{\begin{matrix}x_{1}=-\frac{y_{1}\left(n+2\right)}{4\left(n-2\right)}\text{, }&n\neq 2\\x_{1}\in \mathrm{C}\text{, }&y_{1}=0\text{ and }n=2\end{matrix}\right.
Solve for n
\left\{\begin{matrix}n=-\frac{2\left(y_{1}-4x_{1}\right)}{4x_{1}+y_{1}}\text{, }&y_{1}\neq -4x_{1}\\n\in \mathrm{R}\text{, }&y_{1}=0\text{ and }x_{1}=0\end{matrix}\right.
Solve for x_1
\left\{\begin{matrix}x_{1}=-\frac{y_{1}\left(n+2\right)}{4\left(n-2\right)}\text{, }&n\neq 2\\x_{1}\in \mathrm{R}\text{, }&y_{1}=0\text{ and }n=2\end{matrix}\right.
Share
Copied to clipboard
y_{1}n-\left(y_{1}n-y_{1}\right)+\frac{1}{4}y_{1}\left(n-2\right)=x_{1}n-2x_{1}\left(n-1\right)
Use the distributive property to multiply y_{1} by n-1.
y_{1}n-y_{1}n+y_{1}+\frac{1}{4}y_{1}\left(n-2\right)=x_{1}n-2x_{1}\left(n-1\right)
To find the opposite of y_{1}n-y_{1}, find the opposite of each term.
y_{1}+\frac{1}{4}y_{1}\left(n-2\right)=x_{1}n-2x_{1}\left(n-1\right)
Combine y_{1}n and -y_{1}n to get 0.
y_{1}+\frac{1}{4}y_{1}n-\frac{1}{2}y_{1}=x_{1}n-2x_{1}\left(n-1\right)
Use the distributive property to multiply \frac{1}{4}y_{1} by n-2.
\frac{1}{2}y_{1}+\frac{1}{4}y_{1}n=x_{1}n-2x_{1}\left(n-1\right)
Combine y_{1} and -\frac{1}{2}y_{1} to get \frac{1}{2}y_{1}.
\frac{1}{2}y_{1}+\frac{1}{4}y_{1}n+2x_{1}\left(n-1\right)=x_{1}n
Add 2x_{1}\left(n-1\right) to both sides.
\frac{1}{2}y_{1}+\frac{1}{4}y_{1}n+2x_{1}n-2x_{1}=x_{1}n
Use the distributive property to multiply 2x_{1} by n-1.
\frac{1}{2}y_{1}+\frac{1}{4}y_{1}n+2x_{1}n-2x_{1}-x_{1}n=0
Subtract x_{1}n from both sides.
\frac{1}{2}y_{1}+\frac{1}{4}y_{1}n+x_{1}n-2x_{1}=0
Combine 2x_{1}n and -x_{1}n to get x_{1}n.
\frac{1}{4}y_{1}n+x_{1}n-2x_{1}=-\frac{1}{2}y_{1}
Subtract \frac{1}{2}y_{1} from both sides. Anything subtracted from zero gives its negation.
\frac{1}{4}y_{1}n+x_{1}n=-\frac{1}{2}y_{1}+2x_{1}
Add 2x_{1} to both sides.
\left(\frac{1}{4}y_{1}+x_{1}\right)n=-\frac{1}{2}y_{1}+2x_{1}
Combine all terms containing n.
\left(\frac{y_{1}}{4}+x_{1}\right)n=-\frac{y_{1}}{2}+2x_{1}
The equation is in standard form.
\frac{\left(\frac{y_{1}}{4}+x_{1}\right)n}{\frac{y_{1}}{4}+x_{1}}=\frac{-\frac{y_{1}}{2}+2x_{1}}{\frac{y_{1}}{4}+x_{1}}
Divide both sides by x_{1}+\frac{1}{4}y_{1}.
n=\frac{-\frac{y_{1}}{2}+2x_{1}}{\frac{y_{1}}{4}+x_{1}}
Dividing by x_{1}+\frac{1}{4}y_{1} undoes the multiplication by x_{1}+\frac{1}{4}y_{1}.
n=\frac{2\left(4x_{1}-y_{1}\right)}{4x_{1}+y_{1}}
Divide -\frac{y_{1}}{2}+2x_{1} by x_{1}+\frac{1}{4}y_{1}.
y_{1}n-\left(y_{1}n-y_{1}\right)+\frac{1}{4}y_{1}\left(n-2\right)=x_{1}n-2x_{1}\left(n-1\right)
Use the distributive property to multiply y_{1} by n-1.
y_{1}n-y_{1}n+y_{1}+\frac{1}{4}y_{1}\left(n-2\right)=x_{1}n-2x_{1}\left(n-1\right)
To find the opposite of y_{1}n-y_{1}, find the opposite of each term.
y_{1}+\frac{1}{4}y_{1}\left(n-2\right)=x_{1}n-2x_{1}\left(n-1\right)
Combine y_{1}n and -y_{1}n to get 0.
y_{1}+\frac{1}{4}y_{1}n-\frac{1}{2}y_{1}=x_{1}n-2x_{1}\left(n-1\right)
Use the distributive property to multiply \frac{1}{4}y_{1} by n-2.
\frac{1}{2}y_{1}+\frac{1}{4}y_{1}n=x_{1}n-2x_{1}\left(n-1\right)
Combine y_{1} and -\frac{1}{2}y_{1} to get \frac{1}{2}y_{1}.
x_{1}n-2x_{1}\left(n-1\right)=\frac{1}{2}y_{1}+\frac{1}{4}y_{1}n
Swap sides so that all variable terms are on the left hand side.
x_{1}n-2x_{1}n+2x_{1}=\frac{1}{2}y_{1}+\frac{1}{4}y_{1}n
Use the distributive property to multiply -2x_{1} by n-1.
-x_{1}n+2x_{1}=\frac{1}{2}y_{1}+\frac{1}{4}y_{1}n
Combine x_{1}n and -2x_{1}n to get -x_{1}n.
\left(-n+2\right)x_{1}=\frac{1}{2}y_{1}+\frac{1}{4}y_{1}n
Combine all terms containing x_{1}.
\left(2-n\right)x_{1}=\frac{ny_{1}}{4}+\frac{y_{1}}{2}
The equation is in standard form.
\frac{\left(2-n\right)x_{1}}{2-n}=\frac{y_{1}\left(n+2\right)}{4\left(2-n\right)}
Divide both sides by -n+2.
x_{1}=\frac{y_{1}\left(n+2\right)}{4\left(2-n\right)}
Dividing by -n+2 undoes the multiplication by -n+2.
y_{1}n-\left(y_{1}n-y_{1}\right)+\frac{1}{4}y_{1}\left(n-2\right)=x_{1}n-2x_{1}\left(n-1\right)
Use the distributive property to multiply y_{1} by n-1.
y_{1}n-y_{1}n+y_{1}+\frac{1}{4}y_{1}\left(n-2\right)=x_{1}n-2x_{1}\left(n-1\right)
To find the opposite of y_{1}n-y_{1}, find the opposite of each term.
y_{1}+\frac{1}{4}y_{1}\left(n-2\right)=x_{1}n-2x_{1}\left(n-1\right)
Combine y_{1}n and -y_{1}n to get 0.
y_{1}+\frac{1}{4}y_{1}n-\frac{1}{2}y_{1}=x_{1}n-2x_{1}\left(n-1\right)
Use the distributive property to multiply \frac{1}{4}y_{1} by n-2.
\frac{1}{2}y_{1}+\frac{1}{4}y_{1}n=x_{1}n-2x_{1}\left(n-1\right)
Combine y_{1} and -\frac{1}{2}y_{1} to get \frac{1}{2}y_{1}.
\frac{1}{2}y_{1}+\frac{1}{4}y_{1}n+2x_{1}\left(n-1\right)=x_{1}n
Add 2x_{1}\left(n-1\right) to both sides.
\frac{1}{2}y_{1}+\frac{1}{4}y_{1}n+2x_{1}n-2x_{1}=x_{1}n
Use the distributive property to multiply 2x_{1} by n-1.
\frac{1}{2}y_{1}+\frac{1}{4}y_{1}n+2x_{1}n-2x_{1}-x_{1}n=0
Subtract x_{1}n from both sides.
\frac{1}{2}y_{1}+\frac{1}{4}y_{1}n+x_{1}n-2x_{1}=0
Combine 2x_{1}n and -x_{1}n to get x_{1}n.
\frac{1}{4}y_{1}n+x_{1}n-2x_{1}=-\frac{1}{2}y_{1}
Subtract \frac{1}{2}y_{1} from both sides. Anything subtracted from zero gives its negation.
\frac{1}{4}y_{1}n+x_{1}n=-\frac{1}{2}y_{1}+2x_{1}
Add 2x_{1} to both sides.
\left(\frac{1}{4}y_{1}+x_{1}\right)n=-\frac{1}{2}y_{1}+2x_{1}
Combine all terms containing n.
\left(\frac{y_{1}}{4}+x_{1}\right)n=-\frac{y_{1}}{2}+2x_{1}
The equation is in standard form.
\frac{\left(\frac{y_{1}}{4}+x_{1}\right)n}{\frac{y_{1}}{4}+x_{1}}=\frac{-\frac{y_{1}}{2}+2x_{1}}{\frac{y_{1}}{4}+x_{1}}
Divide both sides by x_{1}+\frac{1}{4}y_{1}.
n=\frac{-\frac{y_{1}}{2}+2x_{1}}{\frac{y_{1}}{4}+x_{1}}
Dividing by x_{1}+\frac{1}{4}y_{1} undoes the multiplication by x_{1}+\frac{1}{4}y_{1}.
n=\frac{2\left(4x_{1}-y_{1}\right)}{4x_{1}+y_{1}}
Divide -\frac{y_{1}}{2}+2x_{1} by x_{1}+\frac{1}{4}y_{1}.
y_{1}n-\left(y_{1}n-y_{1}\right)+\frac{1}{4}y_{1}\left(n-2\right)=x_{1}n-2x_{1}\left(n-1\right)
Use the distributive property to multiply y_{1} by n-1.
y_{1}n-y_{1}n+y_{1}+\frac{1}{4}y_{1}\left(n-2\right)=x_{1}n-2x_{1}\left(n-1\right)
To find the opposite of y_{1}n-y_{1}, find the opposite of each term.
y_{1}+\frac{1}{4}y_{1}\left(n-2\right)=x_{1}n-2x_{1}\left(n-1\right)
Combine y_{1}n and -y_{1}n to get 0.
y_{1}+\frac{1}{4}y_{1}n-\frac{1}{2}y_{1}=x_{1}n-2x_{1}\left(n-1\right)
Use the distributive property to multiply \frac{1}{4}y_{1} by n-2.
\frac{1}{2}y_{1}+\frac{1}{4}y_{1}n=x_{1}n-2x_{1}\left(n-1\right)
Combine y_{1} and -\frac{1}{2}y_{1} to get \frac{1}{2}y_{1}.
x_{1}n-2x_{1}\left(n-1\right)=\frac{1}{2}y_{1}+\frac{1}{4}y_{1}n
Swap sides so that all variable terms are on the left hand side.
x_{1}n-2x_{1}n+2x_{1}=\frac{1}{2}y_{1}+\frac{1}{4}y_{1}n
Use the distributive property to multiply -2x_{1} by n-1.
-x_{1}n+2x_{1}=\frac{1}{2}y_{1}+\frac{1}{4}y_{1}n
Combine x_{1}n and -2x_{1}n to get -x_{1}n.
\left(-n+2\right)x_{1}=\frac{1}{2}y_{1}+\frac{1}{4}y_{1}n
Combine all terms containing x_{1}.
\left(2-n\right)x_{1}=\frac{ny_{1}}{4}+\frac{y_{1}}{2}
The equation is in standard form.
\frac{\left(2-n\right)x_{1}}{2-n}=\frac{y_{1}\left(n+2\right)}{4\left(2-n\right)}
Divide both sides by -n+2.
x_{1}=\frac{y_{1}\left(n+2\right)}{4\left(2-n\right)}
Dividing by -n+2 undoes the multiplication by -n+2.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}