y - y d x = \sqrt { x ^ { 2 } - y ^ { 2 } } d x
Solve for d (complex solution)
\left\{\begin{matrix}d=\frac{y}{x\left(\sqrt{x^{2}-y^{2}}+y\right)}\text{, }&x\neq 0\text{ and }\left(y\neq -\frac{\sqrt{2}x}{2}\text{ or }arg(x)\geq \pi \right)\text{ and }\left(y\neq -\frac{\sqrt{2}x}{2}\text{ or }y\neq \frac{\sqrt{2}x}{2}\right)\text{ and }\left(arg(x)<\pi \text{ or }y\neq \frac{\sqrt{2}x}{2}\right)\\d\in \mathrm{C}\text{, }&x=0\text{ and }y=0\end{matrix}\right.
Solve for d
\left\{\begin{matrix}d=\frac{y}{x\left(\sqrt{x^{2}-y^{2}}+y\right)}\text{, }&\left(x\neq 0\text{ and }y\geq -|x|\text{ and }|x|=|y|\right)\text{ or }\left(y\neq -\frac{\sqrt{2}x}{2}\text{ and }y\leq x\text{ and }y\geq -x\right)\text{ or }\left(y\neq \frac{\sqrt{2}x}{2}\text{ and }y\leq -x\text{ and }y\geq x\right)\\d\in \mathrm{R}\text{, }&y=0\text{ and }x=0\end{matrix}\right.
Graph
Share
Copied to clipboard
y-ydx-\sqrt{x^{2}-y^{2}}dx=0
Subtract \sqrt{x^{2}-y^{2}}dx from both sides.
-ydx-\sqrt{x^{2}-y^{2}}dx=-y
Subtract y from both sides. Anything subtracted from zero gives its negation.
\left(-yx-\sqrt{x^{2}-y^{2}}x\right)d=-y
Combine all terms containing d.
\left(-x\sqrt{x^{2}-y^{2}}-xy\right)d=-y
The equation is in standard form.
\frac{\left(-x\sqrt{x^{2}-y^{2}}-xy\right)d}{-x\sqrt{x^{2}-y^{2}}-xy}=-\frac{y}{-x\sqrt{x^{2}-y^{2}}-xy}
Divide both sides by -yx-\sqrt{x^{2}-y^{2}}x.
d=-\frac{y}{-x\sqrt{x^{2}-y^{2}}-xy}
Dividing by -yx-\sqrt{x^{2}-y^{2}}x undoes the multiplication by -yx-\sqrt{x^{2}-y^{2}}x.
d=\frac{y}{x\left(\sqrt{\left(x-y\right)\left(x+y\right)}+y\right)}
Divide -y by -yx-\sqrt{x^{2}-y^{2}}x.
y-ydx-\sqrt{x^{2}-y^{2}}dx=0
Subtract \sqrt{x^{2}-y^{2}}dx from both sides.
-ydx-\sqrt{x^{2}-y^{2}}dx=-y
Subtract y from both sides. Anything subtracted from zero gives its negation.
\left(-yx-\sqrt{x^{2}-y^{2}}x\right)d=-y
Combine all terms containing d.
\left(-x\sqrt{x^{2}-y^{2}}-xy\right)d=-y
The equation is in standard form.
\frac{\left(-x\sqrt{x^{2}-y^{2}}-xy\right)d}{-x\sqrt{x^{2}-y^{2}}-xy}=-\frac{y}{-x\sqrt{x^{2}-y^{2}}-xy}
Divide both sides by -yx-\sqrt{x^{2}-y^{2}}x.
d=-\frac{y}{-x\sqrt{x^{2}-y^{2}}-xy}
Dividing by -yx-\sqrt{x^{2}-y^{2}}x undoes the multiplication by -yx-\sqrt{x^{2}-y^{2}}x.
d=\frac{y}{x\left(\sqrt{\left(x-y\right)\left(x+y\right)}+y\right)}
Divide -y by -yx-\sqrt{x^{2}-y^{2}}x.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}