Skip to main content
Solve for d (complex solution)
Tick mark Image
Solve for d
Tick mark Image
Graph

Similar Problems from Web Search

Share

y-ydx-\sqrt{x^{2}-y^{2}}dx=0
Subtract \sqrt{x^{2}-y^{2}}dx from both sides.
-ydx-\sqrt{x^{2}-y^{2}}dx=-y
Subtract y from both sides. Anything subtracted from zero gives its negation.
\left(-yx-\sqrt{x^{2}-y^{2}}x\right)d=-y
Combine all terms containing d.
\left(-x\sqrt{x^{2}-y^{2}}-xy\right)d=-y
The equation is in standard form.
\frac{\left(-x\sqrt{x^{2}-y^{2}}-xy\right)d}{-x\sqrt{x^{2}-y^{2}}-xy}=-\frac{y}{-x\sqrt{x^{2}-y^{2}}-xy}
Divide both sides by -yx-\sqrt{x^{2}-y^{2}}x.
d=-\frac{y}{-x\sqrt{x^{2}-y^{2}}-xy}
Dividing by -yx-\sqrt{x^{2}-y^{2}}x undoes the multiplication by -yx-\sqrt{x^{2}-y^{2}}x.
d=\frac{y}{x\left(\sqrt{\left(x-y\right)\left(x+y\right)}+y\right)}
Divide -y by -yx-\sqrt{x^{2}-y^{2}}x.
y-ydx-\sqrt{x^{2}-y^{2}}dx=0
Subtract \sqrt{x^{2}-y^{2}}dx from both sides.
-ydx-\sqrt{x^{2}-y^{2}}dx=-y
Subtract y from both sides. Anything subtracted from zero gives its negation.
\left(-yx-\sqrt{x^{2}-y^{2}}x\right)d=-y
Combine all terms containing d.
\left(-x\sqrt{x^{2}-y^{2}}-xy\right)d=-y
The equation is in standard form.
\frac{\left(-x\sqrt{x^{2}-y^{2}}-xy\right)d}{-x\sqrt{x^{2}-y^{2}}-xy}=-\frac{y}{-x\sqrt{x^{2}-y^{2}}-xy}
Divide both sides by -yx-\sqrt{x^{2}-y^{2}}x.
d=-\frac{y}{-x\sqrt{x^{2}-y^{2}}-xy}
Dividing by -yx-\sqrt{x^{2}-y^{2}}x undoes the multiplication by -yx-\sqrt{x^{2}-y^{2}}x.
d=\frac{y}{x\left(\sqrt{\left(x-y\right)\left(x+y\right)}+y\right)}
Divide -y by -yx-\sqrt{x^{2}-y^{2}}x.