Solve for y
y=\frac{n^{2}+2}{n-1}
n\neq 1\text{ and }n\neq 0
Solve for n (complex solution)
\left\{\begin{matrix}\\n=\frac{-\sqrt{y^{2}-4y-8}+y}{2}\text{, }&\text{unconditionally}\\n=\frac{\sqrt{y^{2}-4y-8}+y}{2}\text{, }&y\neq -2\end{matrix}\right.
Solve for n
\left\{\begin{matrix}n=\frac{\sqrt{y^{2}-4y-8}+y}{2}\text{, }&y\geq 2\sqrt{3}+2\text{ or }\left(y\neq -2\text{ and }y\leq 2-2\sqrt{3}\right)\\n=\frac{-\sqrt{y^{2}-4y-8}+y}{2}\text{, }&y\geq 2\sqrt{3}+2\text{ or }y\leq 2-2\sqrt{3}\end{matrix}\right.
Share
Copied to clipboard
ny-nn=y+2
Multiply both sides of the equation by n.
ny-n^{2}=y+2
Multiply n and n to get n^{2}.
ny-n^{2}-y=2
Subtract y from both sides.
ny-y=2+n^{2}
Add n^{2} to both sides.
\left(n-1\right)y=2+n^{2}
Combine all terms containing y.
\left(n-1\right)y=n^{2}+2
The equation is in standard form.
\frac{\left(n-1\right)y}{n-1}=\frac{n^{2}+2}{n-1}
Divide both sides by n-1.
y=\frac{n^{2}+2}{n-1}
Dividing by n-1 undoes the multiplication by n-1.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}