Solve for y
y=7
Graph
Share
Copied to clipboard
\left(y-5\right)^{2}=\left(\sqrt{-6y+46}\right)^{2}
Square both sides of the equation.
y^{2}-10y+25=\left(\sqrt{-6y+46}\right)^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(y-5\right)^{2}.
y^{2}-10y+25=-6y+46
Calculate \sqrt{-6y+46} to the power of 2 and get -6y+46.
y^{2}-10y+25+6y=46
Add 6y to both sides.
y^{2}-4y+25=46
Combine -10y and 6y to get -4y.
y^{2}-4y+25-46=0
Subtract 46 from both sides.
y^{2}-4y-21=0
Subtract 46 from 25 to get -21.
a+b=-4 ab=-21
To solve the equation, factor y^{2}-4y-21 using formula y^{2}+\left(a+b\right)y+ab=\left(y+a\right)\left(y+b\right). To find a and b, set up a system to be solved.
1,-21 3,-7
Since ab is negative, a and b have the opposite signs. Since a+b is negative, the negative number has greater absolute value than the positive. List all such integer pairs that give product -21.
1-21=-20 3-7=-4
Calculate the sum for each pair.
a=-7 b=3
The solution is the pair that gives sum -4.
\left(y-7\right)\left(y+3\right)
Rewrite factored expression \left(y+a\right)\left(y+b\right) using the obtained values.
y=7 y=-3
To find equation solutions, solve y-7=0 and y+3=0.
7-5=\sqrt{-6\times 7+46}
Substitute 7 for y in the equation y-5=\sqrt{-6y+46}.
2=2
Simplify. The value y=7 satisfies the equation.
-3-5=\sqrt{-6\left(-3\right)+46}
Substitute -3 for y in the equation y-5=\sqrt{-6y+46}.
-8=8
Simplify. The value y=-3 does not satisfy the equation because the left and the right hand side have opposite signs.
y=7
Equation y-5=\sqrt{46-6y} has a unique solution.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}