Solve for x
x=\frac{\left(2\sqrt{2}+3\right)\left(y-2\right)+2}{2}
Solve for y
y=2\left(\left(3-2\sqrt{2}\right)\left(x-1\right)+1\right)
Graph
Share
Copied to clipboard
y-2=6x-6-4\sqrt{2}x+4\sqrt{2}
Use the distributive property to multiply 6-4\sqrt{2} by x-1.
6x-6-4\sqrt{2}x+4\sqrt{2}=y-2
Swap sides so that all variable terms are on the left hand side.
6x-4\sqrt{2}x+4\sqrt{2}=y-2+6
Add 6 to both sides.
6x-4\sqrt{2}x+4\sqrt{2}=y+4
Add -2 and 6 to get 4.
6x-4\sqrt{2}x=y+4-4\sqrt{2}
Subtract 4\sqrt{2} from both sides.
\left(6-4\sqrt{2}\right)x=y+4-4\sqrt{2}
Combine all terms containing x.
\frac{\left(6-4\sqrt{2}\right)x}{6-4\sqrt{2}}=\frac{y+4-4\sqrt{2}}{6-4\sqrt{2}}
Divide both sides by 6-4\sqrt{2}.
x=\frac{y+4-4\sqrt{2}}{6-4\sqrt{2}}
Dividing by 6-4\sqrt{2} undoes the multiplication by 6-4\sqrt{2}.
x=\frac{\left(2\sqrt{2}+3\right)\left(y+4-4\sqrt{2}\right)}{2}
Divide y+4-4\sqrt{2} by 6-4\sqrt{2}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}