Solve for x
x=\frac{7y-27}{2}
Solve for y
y=\frac{2x+27}{7}
Graph
Share
Copied to clipboard
y-1=\frac{2}{7}\left(x+10\right)
Fraction \frac{-2}{-7} can be simplified to \frac{2}{7} by removing the negative sign from both the numerator and the denominator.
y-1=\frac{2}{7}x+\frac{20}{7}
Use the distributive property to multiply \frac{2}{7} by x+10.
\frac{2}{7}x+\frac{20}{7}=y-1
Swap sides so that all variable terms are on the left hand side.
\frac{2}{7}x=y-1-\frac{20}{7}
Subtract \frac{20}{7} from both sides.
\frac{2}{7}x=y-\frac{27}{7}
Subtract \frac{20}{7} from -1 to get -\frac{27}{7}.
\frac{\frac{2}{7}x}{\frac{2}{7}}=\frac{y-\frac{27}{7}}{\frac{2}{7}}
Divide both sides of the equation by \frac{2}{7}, which is the same as multiplying both sides by the reciprocal of the fraction.
x=\frac{y-\frac{27}{7}}{\frac{2}{7}}
Dividing by \frac{2}{7} undoes the multiplication by \frac{2}{7}.
x=\frac{7y-27}{2}
Divide y-\frac{27}{7} by \frac{2}{7} by multiplying y-\frac{27}{7} by the reciprocal of \frac{2}{7}.
y-1=\frac{2}{7}\left(x+10\right)
Fraction \frac{-2}{-7} can be simplified to \frac{2}{7} by removing the negative sign from both the numerator and the denominator.
y-1=\frac{2}{7}x+\frac{20}{7}
Use the distributive property to multiply \frac{2}{7} by x+10.
y=\frac{2}{7}x+\frac{20}{7}+1
Add 1 to both sides.
y=\frac{2}{7}x+\frac{27}{7}
Add \frac{20}{7} and 1 to get \frac{27}{7}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}