Solve for y
y=9
Graph
Share
Copied to clipboard
-\sqrt{y}=-\left(y-6\right)
Subtract y-6 from both sides of the equation.
\sqrt{y}=y-6
Cancel out -1 on both sides.
\left(\sqrt{y}\right)^{2}=\left(y-6\right)^{2}
Square both sides of the equation.
y=\left(y-6\right)^{2}
Calculate \sqrt{y} to the power of 2 and get y.
y=y^{2}-12y+36
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(y-6\right)^{2}.
y-y^{2}=-12y+36
Subtract y^{2} from both sides.
y-y^{2}+12y=36
Add 12y to both sides.
13y-y^{2}=36
Combine y and 12y to get 13y.
13y-y^{2}-36=0
Subtract 36 from both sides.
-y^{2}+13y-36=0
Rearrange the polynomial to put it in standard form. Place the terms in order from highest to lowest power.
a+b=13 ab=-\left(-36\right)=36
To solve the equation, factor the left hand side by grouping. First, left hand side needs to be rewritten as -y^{2}+ay+by-36. To find a and b, set up a system to be solved.
1,36 2,18 3,12 4,9 6,6
Since ab is positive, a and b have the same sign. Since a+b is positive, a and b are both positive. List all such integer pairs that give product 36.
1+36=37 2+18=20 3+12=15 4+9=13 6+6=12
Calculate the sum for each pair.
a=9 b=4
The solution is the pair that gives sum 13.
\left(-y^{2}+9y\right)+\left(4y-36\right)
Rewrite -y^{2}+13y-36 as \left(-y^{2}+9y\right)+\left(4y-36\right).
-y\left(y-9\right)+4\left(y-9\right)
Factor out -y in the first and 4 in the second group.
\left(y-9\right)\left(-y+4\right)
Factor out common term y-9 by using distributive property.
y=9 y=4
To find equation solutions, solve y-9=0 and -y+4=0.
9-\sqrt{9}-6=0
Substitute 9 for y in the equation y-\sqrt{y}-6=0.
0=0
Simplify. The value y=9 satisfies the equation.
4-\sqrt{4}-6=0
Substitute 4 for y in the equation y-\sqrt{y}-6=0.
-4=0
Simplify. The value y=4 does not satisfy the equation.
y=9
Equation \sqrt{y}=y-6 has a unique solution.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}