Solve for b
b=-\frac{35}{4-7y}
y\neq \frac{4}{7}
Solve for y
y=\frac{4}{7}+\frac{5}{b}
b\neq 0
Graph
Share
Copied to clipboard
7by-7\times 5=4b
Variable b cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by 7b, the least common multiple of b,7.
7by-35=4b
Multiply -7 and 5 to get -35.
7by-35-4b=0
Subtract 4b from both sides.
7by-4b=35
Add 35 to both sides. Anything plus zero gives itself.
\left(7y-4\right)b=35
Combine all terms containing b.
\frac{\left(7y-4\right)b}{7y-4}=\frac{35}{7y-4}
Divide both sides by 7y-4.
b=\frac{35}{7y-4}
Dividing by 7y-4 undoes the multiplication by 7y-4.
b=\frac{35}{7y-4}\text{, }b\neq 0
Variable b cannot be equal to 0.
7by-7\times 5=4b
Multiply both sides of the equation by 7b, the least common multiple of b,7.
7by-35=4b
Multiply -7 and 5 to get -35.
7by=4b+35
Add 35 to both sides.
\frac{7by}{7b}=\frac{4b+35}{7b}
Divide both sides by 7b.
y=\frac{4b+35}{7b}
Dividing by 7b undoes the multiplication by 7b.
y=\frac{4}{7}+\frac{5}{b}
Divide 4b+35 by 7b.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}