Solve for x
x=\frac{\sqrt{3}\left(2y-3\right)+10}{6}
Solve for y
y=\sqrt{3}x-\frac{5\sqrt{3}}{3}+\frac{3}{2}
Graph
Quiz
Linear Equation
5 problems similar to:
y - \frac { 3 } { 2 } = \sqrt { 3 } ( x - \frac { 5 } { 3 } )
Share
Copied to clipboard
y-\frac{3}{2}=\sqrt{3}x-\frac{5}{3}\sqrt{3}
Use the distributive property to multiply \sqrt{3} by x-\frac{5}{3}.
\sqrt{3}x-\frac{5}{3}\sqrt{3}=y-\frac{3}{2}
Swap sides so that all variable terms are on the left hand side.
\sqrt{3}x=y-\frac{3}{2}+\frac{5}{3}\sqrt{3}
Add \frac{5}{3}\sqrt{3} to both sides.
\sqrt{3}x=y+\frac{5\sqrt{3}}{3}-\frac{3}{2}
The equation is in standard form.
\frac{\sqrt{3}x}{\sqrt{3}}=\frac{y+\frac{5\sqrt{3}}{3}-\frac{3}{2}}{\sqrt{3}}
Divide both sides by \sqrt{3}.
x=\frac{y+\frac{5\sqrt{3}}{3}-\frac{3}{2}}{\sqrt{3}}
Dividing by \sqrt{3} undoes the multiplication by \sqrt{3}.
x=\frac{\sqrt{3}y}{3}-\frac{\sqrt{3}}{2}+\frac{5}{3}
Divide y-\frac{3}{2}+\frac{5\sqrt{3}}{3} by \sqrt{3}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}