Solve for j (complex solution)
\left\{\begin{matrix}j=\frac{j_{2}y-2y-2}{x\left(j_{4}+3\right)}\text{, }&j_{4}\neq -3\text{ and }x\neq 0\\j\in \mathrm{C}\text{, }&y=\frac{2}{j_{2}-2}\text{ and }j_{2}\neq 2\text{ and }\left(j_{4}=-3\text{ or }x=0\right)\end{matrix}\right.
Solve for j_2 (complex solution)
\left\{\begin{matrix}j_{2}=\frac{jj_{4}x+3jx+2y+2}{y}\text{, }&y\neq 0\\j_{2}\in \mathrm{C}\text{, }&x=-\frac{2}{j\left(j_{4}+3\right)}\text{ and }j_{4}\neq -3\text{ and }j\neq 0\text{ and }y=0\end{matrix}\right.
Solve for j
\left\{\begin{matrix}j=\frac{j_{2}y-2y-2}{x\left(j_{4}+3\right)}\text{, }&j_{4}\neq -3\text{ and }x\neq 0\\j\in \mathrm{R}\text{, }&y=\frac{2}{j_{2}-2}\text{ and }j_{2}\neq 2\text{ and }\left(j_{4}=-3\text{ or }x=0\right)\end{matrix}\right.
Solve for j_2
\left\{\begin{matrix}j_{2}=\frac{jj_{4}x+3jx+2y+2}{y}\text{, }&y\neq 0\\j_{2}\in \mathrm{R}\text{, }&j=-\frac{2}{x\left(j_{4}+3\right)}\text{ and }j_{4}\neq -3\text{ and }x\neq 0\text{ and }y=0\end{matrix}\right.
Graph
Share
Copied to clipboard
yj_{2}-2y-xj\left(j_{4}+3\right)=2
Use the distributive property to multiply y by j_{2}-2.
yj_{2}-2y-\left(xjj_{4}+3xj\right)=2
Use the distributive property to multiply xj by j_{4}+3.
yj_{2}-2y-xjj_{4}-3xj=2
To find the opposite of xjj_{4}+3xj, find the opposite of each term.
-2y-xjj_{4}-3xj=2-yj_{2}
Subtract yj_{2} from both sides.
-xjj_{4}-3xj=2-yj_{2}+2y
Add 2y to both sides.
\left(-xj_{4}-3x\right)j=2-yj_{2}+2y
Combine all terms containing j.
\left(-j_{4}x-3x\right)j=2+2y-j_{2}y
The equation is in standard form.
\frac{\left(-j_{4}x-3x\right)j}{-j_{4}x-3x}=\frac{2+2y-j_{2}y}{-j_{4}x-3x}
Divide both sides by -j_{4}x-3x.
j=\frac{2+2y-j_{2}y}{-j_{4}x-3x}
Dividing by -j_{4}x-3x undoes the multiplication by -j_{4}x-3x.
j=-\frac{2+2y-j_{2}y}{x\left(j_{4}+3\right)}
Divide -yj_{2}+2y+2 by -j_{4}x-3x.
yj_{2}-2y-xj\left(j_{4}+3\right)=2
Use the distributive property to multiply y by j_{2}-2.
yj_{2}-2y-\left(xjj_{4}+3xj\right)=2
Use the distributive property to multiply xj by j_{4}+3.
yj_{2}-2y-xjj_{4}-3xj=2
To find the opposite of xjj_{4}+3xj, find the opposite of each term.
yj_{2}-xjj_{4}-3xj=2+2y
Add 2y to both sides.
yj_{2}-3xj=2+2y+xjj_{4}
Add xjj_{4} to both sides.
yj_{2}=2+2y+xjj_{4}+3xj
Add 3xj to both sides.
yj_{2}=jj_{4}x+3jx+2y+2
The equation is in standard form.
\frac{yj_{2}}{y}=\frac{jj_{4}x+3jx+2y+2}{y}
Divide both sides by y.
j_{2}=\frac{jj_{4}x+3jx+2y+2}{y}
Dividing by y undoes the multiplication by y.
yj_{2}-2y-xj\left(j_{4}+3\right)=2
Use the distributive property to multiply y by j_{2}-2.
yj_{2}-2y-\left(xjj_{4}+3xj\right)=2
Use the distributive property to multiply xj by j_{4}+3.
yj_{2}-2y-xjj_{4}-3xj=2
To find the opposite of xjj_{4}+3xj, find the opposite of each term.
-2y-xjj_{4}-3xj=2-yj_{2}
Subtract yj_{2} from both sides.
-xjj_{4}-3xj=2-yj_{2}+2y
Add 2y to both sides.
\left(-xj_{4}-3x\right)j=2-yj_{2}+2y
Combine all terms containing j.
\left(-j_{4}x-3x\right)j=2+2y-j_{2}y
The equation is in standard form.
\frac{\left(-j_{4}x-3x\right)j}{-j_{4}x-3x}=\frac{2+2y-j_{2}y}{-j_{4}x-3x}
Divide both sides by -j_{4}x-3x.
j=\frac{2+2y-j_{2}y}{-j_{4}x-3x}
Dividing by -j_{4}x-3x undoes the multiplication by -j_{4}x-3x.
j=\frac{2+2y-j_{2}y}{-x\left(j_{4}+3\right)}
Divide 2-yj_{2}+2y by -j_{4}x-3x.
yj_{2}-2y-xj\left(j_{4}+3\right)=2
Use the distributive property to multiply y by j_{2}-2.
yj_{2}-2y-\left(xjj_{4}+3xj\right)=2
Use the distributive property to multiply xj by j_{4}+3.
yj_{2}-2y-xjj_{4}-3xj=2
To find the opposite of xjj_{4}+3xj, find the opposite of each term.
yj_{2}-xjj_{4}-3xj=2+2y
Add 2y to both sides.
yj_{2}-3xj=2+2y+xjj_{4}
Add xjj_{4} to both sides.
yj_{2}=2+2y+xjj_{4}+3xj
Add 3xj to both sides.
yj_{2}=jj_{4}x+3jx+2y+2
The equation is in standard form.
\frac{yj_{2}}{y}=\frac{jj_{4}x+3jx+2y+2}{y}
Divide both sides by y.
j_{2}=\frac{jj_{4}x+3jx+2y+2}{y}
Dividing by y undoes the multiplication by y.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}