Skip to main content
Solve for y
Tick mark Image

Similar Problems from Web Search

Share

2y^{2}+y+10=0
Use the distributive property to multiply y by 2y+1.
y=\frac{-1±\sqrt{1^{2}-4\times 2\times 10}}{2\times 2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 2 for a, 1 for b, and 10 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
y=\frac{-1±\sqrt{1-4\times 2\times 10}}{2\times 2}
Square 1.
y=\frac{-1±\sqrt{1-8\times 10}}{2\times 2}
Multiply -4 times 2.
y=\frac{-1±\sqrt{1-80}}{2\times 2}
Multiply -8 times 10.
y=\frac{-1±\sqrt{-79}}{2\times 2}
Add 1 to -80.
y=\frac{-1±\sqrt{79}i}{2\times 2}
Take the square root of -79.
y=\frac{-1±\sqrt{79}i}{4}
Multiply 2 times 2.
y=\frac{-1+\sqrt{79}i}{4}
Now solve the equation y=\frac{-1±\sqrt{79}i}{4} when ± is plus. Add -1 to i\sqrt{79}.
y=\frac{-\sqrt{79}i-1}{4}
Now solve the equation y=\frac{-1±\sqrt{79}i}{4} when ± is minus. Subtract i\sqrt{79} from -1.
y=\frac{-1+\sqrt{79}i}{4} y=\frac{-\sqrt{79}i-1}{4}
The equation is now solved.
2y^{2}+y+10=0
Use the distributive property to multiply y by 2y+1.
2y^{2}+y=-10
Subtract 10 from both sides. Anything subtracted from zero gives its negation.
\frac{2y^{2}+y}{2}=-\frac{10}{2}
Divide both sides by 2.
y^{2}+\frac{1}{2}y=-\frac{10}{2}
Dividing by 2 undoes the multiplication by 2.
y^{2}+\frac{1}{2}y=-5
Divide -10 by 2.
y^{2}+\frac{1}{2}y+\left(\frac{1}{4}\right)^{2}=-5+\left(\frac{1}{4}\right)^{2}
Divide \frac{1}{2}, the coefficient of the x term, by 2 to get \frac{1}{4}. Then add the square of \frac{1}{4} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
y^{2}+\frac{1}{2}y+\frac{1}{16}=-5+\frac{1}{16}
Square \frac{1}{4} by squaring both the numerator and the denominator of the fraction.
y^{2}+\frac{1}{2}y+\frac{1}{16}=-\frac{79}{16}
Add -5 to \frac{1}{16}.
\left(y+\frac{1}{4}\right)^{2}=-\frac{79}{16}
Factor y^{2}+\frac{1}{2}y+\frac{1}{16}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(y+\frac{1}{4}\right)^{2}}=\sqrt{-\frac{79}{16}}
Take the square root of both sides of the equation.
y+\frac{1}{4}=\frac{\sqrt{79}i}{4} y+\frac{1}{4}=-\frac{\sqrt{79}i}{4}
Simplify.
y=\frac{-1+\sqrt{79}i}{4} y=\frac{-\sqrt{79}i-1}{4}
Subtract \frac{1}{4} from both sides of the equation.