y ( 1 - p ^ { 2 } ) ( 1 + x \% ) = y
Solve for x (complex solution)
\left\{\begin{matrix}x=\frac{100p^{2}}{1-p^{2}}\text{, }&p\neq 1\text{ and }p\neq -1\\x\in \mathrm{C}\text{, }&y=0\end{matrix}\right.
Solve for x
\left\{\begin{matrix}x=\frac{100p^{2}}{1-p^{2}}\text{, }&|p|\neq 1\\x\in \mathrm{R}\text{, }&y=0\end{matrix}\right.
Solve for p (complex solution)
\left\{\begin{matrix}p=-i\left(-x-100\right)^{-\frac{1}{2}}\sqrt{x}\text{; }p=i\left(-x-100\right)^{-\frac{1}{2}}\sqrt{x}\text{, }&x\neq -100\\p\in \mathrm{C}\text{, }&y=0\end{matrix}\right.
Solve for p
\left\{\begin{matrix}p=\sqrt{\frac{x}{x+100}}\text{; }p=-\sqrt{\frac{x}{x+100}}\text{, }&x\geq 0\text{ or }x<-100\\p\in \mathrm{R}\text{, }&y=0\end{matrix}\right.
Graph
Share
Copied to clipboard
\left(y-yp^{2}\right)\left(1+\frac{x}{100}\right)=y
Use the distributive property to multiply y by 1-p^{2}.
y+y\times \frac{x}{100}-yp^{2}-yp^{2}\times \frac{x}{100}=y
Use the distributive property to multiply y-yp^{2} by 1+\frac{x}{100}.
y+\frac{yx}{100}-yp^{2}-yp^{2}\times \frac{x}{100}=y
Express y\times \frac{x}{100} as a single fraction.
y+\frac{yx}{100}-yp^{2}-\frac{yx}{100}p^{2}=y
Express y\times \frac{x}{100} as a single fraction.
y+\frac{yx}{100}-yp^{2}-\frac{yxp^{2}}{100}=y
Express \frac{yx}{100}p^{2} as a single fraction.
\frac{yx}{100}-yp^{2}-\frac{yxp^{2}}{100}=y-y
Subtract y from both sides.
\frac{yx-yxp^{2}}{100}-yp^{2}=y-y
Since \frac{yx}{100} and \frac{yxp^{2}}{100} have the same denominator, subtract them by subtracting their numerators.
\frac{yx-yxp^{2}}{100}-yp^{2}=0
Combine y and -y to get 0.
\frac{yx-yxp^{2}}{100}=yp^{2}
Add yp^{2} to both sides. Anything plus zero gives itself.
yx-yxp^{2}=100yp^{2}
Multiply both sides of the equation by 100.
\left(y-yp^{2}\right)x=100yp^{2}
Combine all terms containing x.
\frac{\left(y-yp^{2}\right)x}{y-yp^{2}}=\frac{100yp^{2}}{y-yp^{2}}
Divide both sides by y-yp^{2}.
x=\frac{100yp^{2}}{y-yp^{2}}
Dividing by y-yp^{2} undoes the multiplication by y-yp^{2}.
x=\frac{100p^{2}}{1-p^{2}}
Divide 100yp^{2} by y-yp^{2}.
\left(y-yp^{2}\right)\left(1+\frac{x}{100}\right)=y
Use the distributive property to multiply y by 1-p^{2}.
y+y\times \frac{x}{100}-yp^{2}-yp^{2}\times \frac{x}{100}=y
Use the distributive property to multiply y-yp^{2} by 1+\frac{x}{100}.
y+\frac{yx}{100}-yp^{2}-yp^{2}\times \frac{x}{100}=y
Express y\times \frac{x}{100} as a single fraction.
y+\frac{yx}{100}-yp^{2}-\frac{yx}{100}p^{2}=y
Express y\times \frac{x}{100} as a single fraction.
y+\frac{yx}{100}-yp^{2}-\frac{yxp^{2}}{100}=y
Express \frac{yx}{100}p^{2} as a single fraction.
\frac{yx}{100}-yp^{2}-\frac{yxp^{2}}{100}=y-y
Subtract y from both sides.
\frac{yx-yxp^{2}}{100}-yp^{2}=y-y
Since \frac{yx}{100} and \frac{yxp^{2}}{100} have the same denominator, subtract them by subtracting their numerators.
\frac{yx-yxp^{2}}{100}-yp^{2}=0
Combine y and -y to get 0.
\frac{yx-yxp^{2}}{100}=yp^{2}
Add yp^{2} to both sides. Anything plus zero gives itself.
yx-yxp^{2}=100yp^{2}
Multiply both sides of the equation by 100.
\left(y-yp^{2}\right)x=100yp^{2}
Combine all terms containing x.
\frac{\left(y-yp^{2}\right)x}{y-yp^{2}}=\frac{100yp^{2}}{y-yp^{2}}
Divide both sides by y-yp^{2}.
x=\frac{100yp^{2}}{y-yp^{2}}
Dividing by y-yp^{2} undoes the multiplication by y-yp^{2}.
x=\frac{100p^{2}}{1-p^{2}}
Divide 100yp^{2} by y-yp^{2}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}