Solve for y
y=\frac{3}{x^{2}+x-6}
x\neq -3\text{ and }x\neq 2
Solve for x (complex solution)
x=\frac{\sqrt{25y^{2}+12y}}{2y}-\frac{1}{2}
x=-\frac{\sqrt{25y^{2}+12y}}{2y}-\frac{1}{2}\text{, }y\neq 0
Solve for x
x=\frac{\sqrt{25y^{2}+12y}}{2y}-\frac{1}{2}
x=-\frac{\sqrt{25y^{2}+12y}}{2y}-\frac{1}{2}\text{, }y>0\text{ or }y\leq -\frac{12}{25}
Graph
Share
Copied to clipboard
yx^{2}-\left(-x\right)y=6y+3
Subtract \left(-x\right)y from both sides.
yx^{2}-\left(-x\right)y-6y=3
Subtract 6y from both sides.
yx^{2}+xy-6y=3
Multiply -1 and -1 to get 1.
\left(x^{2}+x-6\right)y=3
Combine all terms containing y.
\frac{\left(x^{2}+x-6\right)y}{x^{2}+x-6}=\frac{3}{x^{2}+x-6}
Divide both sides by x^{2}+x-6.
y=\frac{3}{x^{2}+x-6}
Dividing by x^{2}+x-6 undoes the multiplication by x^{2}+x-6.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}