Solve for y
y=-\frac{2\left(x+2\right)}{x\left(x+1\right)}
x\neq -1\text{ and }x\neq 0
Solve for x (complex solution)
\left\{\begin{matrix}x=\frac{\sqrt{y^{2}-12y+4}-y-2}{2y}\text{; }x=-\frac{\sqrt{y^{2}-12y+4}+y+2}{2y}\text{, }&y\neq 0\\x=-2\text{, }&y=0\end{matrix}\right.
Solve for x
\left\{\begin{matrix}x=\frac{\sqrt{y^{2}-12y+4}-y-2}{2y}\text{; }x=-\frac{\sqrt{y^{2}-12y+4}+y+2}{2y}\text{, }&\left(y\neq 0\text{ and }y\leq 6-4\sqrt{2}\right)\text{ or }y\geq 4\sqrt{2}+6\\x=-2\text{, }&y=0\end{matrix}\right.
Graph
Share
Copied to clipboard
yx^{2}+yx+2x+4=0
Use the distributive property to multiply y+2 by x.
yx^{2}+yx+4=-2x
Subtract 2x from both sides. Anything subtracted from zero gives its negation.
yx^{2}+yx=-2x-4
Subtract 4 from both sides.
\left(x^{2}+x\right)y=-2x-4
Combine all terms containing y.
\frac{\left(x^{2}+x\right)y}{x^{2}+x}=\frac{-2x-4}{x^{2}+x}
Divide both sides by x^{2}+x.
y=\frac{-2x-4}{x^{2}+x}
Dividing by x^{2}+x undoes the multiplication by x^{2}+x.
y=-\frac{2\left(x+2\right)}{x\left(x+1\right)}
Divide -2x-4 by x^{2}+x.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}