Solve for x
x=-24+\frac{24}{y}
y\neq 0
Solve for y
y=\frac{24}{x+24}
x\neq -24
Graph
Share
Copied to clipboard
y\times \frac{1}{8}x=3-3y
Subtract 3y from both sides.
\frac{y}{8}x=3-3y
The equation is in standard form.
\frac{8\times \frac{y}{8}x}{y}=\frac{8\left(3-3y\right)}{y}
Divide both sides by \frac{1}{8}y.
x=\frac{8\left(3-3y\right)}{y}
Dividing by \frac{1}{8}y undoes the multiplication by \frac{1}{8}y.
x=-24+\frac{24}{y}
Divide 3-3y by \frac{1}{8}y.
\left(\frac{1}{8}x+3\right)y=3
Combine all terms containing y.
\left(\frac{x}{8}+3\right)y=3
The equation is in standard form.
\frac{\left(\frac{x}{8}+3\right)y}{\frac{x}{8}+3}=\frac{3}{\frac{x}{8}+3}
Divide both sides by \frac{1}{8}x+3.
y=\frac{3}{\frac{x}{8}+3}
Dividing by \frac{1}{8}x+3 undoes the multiplication by \frac{1}{8}x+3.
y=\frac{24}{x+24}
Divide 3 by \frac{1}{8}x+3.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}