Skip to main content
Solve for y
Tick mark Image
Graph

Similar Problems from Web Search

Share

y^{2}-47y=160
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
y^{2}-47y-160=160-160
Subtract 160 from both sides of the equation.
y^{2}-47y-160=0
Subtracting 160 from itself leaves 0.
y=\frac{-\left(-47\right)±\sqrt{\left(-47\right)^{2}-4\left(-160\right)}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, -47 for b, and -160 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
y=\frac{-\left(-47\right)±\sqrt{2209-4\left(-160\right)}}{2}
Square -47.
y=\frac{-\left(-47\right)±\sqrt{2209+640}}{2}
Multiply -4 times -160.
y=\frac{-\left(-47\right)±\sqrt{2849}}{2}
Add 2209 to 640.
y=\frac{47±\sqrt{2849}}{2}
The opposite of -47 is 47.
y=\frac{\sqrt{2849}+47}{2}
Now solve the equation y=\frac{47±\sqrt{2849}}{2} when ± is plus. Add 47 to \sqrt{2849}.
y=\frac{47-\sqrt{2849}}{2}
Now solve the equation y=\frac{47±\sqrt{2849}}{2} when ± is minus. Subtract \sqrt{2849} from 47.
y=\frac{\sqrt{2849}+47}{2} y=\frac{47-\sqrt{2849}}{2}
The equation is now solved.
y^{2}-47y=160
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
y^{2}-47y+\left(-\frac{47}{2}\right)^{2}=160+\left(-\frac{47}{2}\right)^{2}
Divide -47, the coefficient of the x term, by 2 to get -\frac{47}{2}. Then add the square of -\frac{47}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
y^{2}-47y+\frac{2209}{4}=160+\frac{2209}{4}
Square -\frac{47}{2} by squaring both the numerator and the denominator of the fraction.
y^{2}-47y+\frac{2209}{4}=\frac{2849}{4}
Add 160 to \frac{2209}{4}.
\left(y-\frac{47}{2}\right)^{2}=\frac{2849}{4}
Factor y^{2}-47y+\frac{2209}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(y-\frac{47}{2}\right)^{2}}=\sqrt{\frac{2849}{4}}
Take the square root of both sides of the equation.
y-\frac{47}{2}=\frac{\sqrt{2849}}{2} y-\frac{47}{2}=-\frac{\sqrt{2849}}{2}
Simplify.
y=\frac{\sqrt{2849}+47}{2} y=\frac{47-\sqrt{2849}}{2}
Add \frac{47}{2} to both sides of the equation.