Solve for y
y = \frac{\sqrt{2849} + 47}{2} \approx 50.18801229
y=\frac{47-\sqrt{2849}}{2}\approx -3.18801229
Graph
Share
Copied to clipboard
y^{2}-47y=160
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
y^{2}-47y-160=160-160
Subtract 160 from both sides of the equation.
y^{2}-47y-160=0
Subtracting 160 from itself leaves 0.
y=\frac{-\left(-47\right)±\sqrt{\left(-47\right)^{2}-4\left(-160\right)}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, -47 for b, and -160 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
y=\frac{-\left(-47\right)±\sqrt{2209-4\left(-160\right)}}{2}
Square -47.
y=\frac{-\left(-47\right)±\sqrt{2209+640}}{2}
Multiply -4 times -160.
y=\frac{-\left(-47\right)±\sqrt{2849}}{2}
Add 2209 to 640.
y=\frac{47±\sqrt{2849}}{2}
The opposite of -47 is 47.
y=\frac{\sqrt{2849}+47}{2}
Now solve the equation y=\frac{47±\sqrt{2849}}{2} when ± is plus. Add 47 to \sqrt{2849}.
y=\frac{47-\sqrt{2849}}{2}
Now solve the equation y=\frac{47±\sqrt{2849}}{2} when ± is minus. Subtract \sqrt{2849} from 47.
y=\frac{\sqrt{2849}+47}{2} y=\frac{47-\sqrt{2849}}{2}
The equation is now solved.
y^{2}-47y=160
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
y^{2}-47y+\left(-\frac{47}{2}\right)^{2}=160+\left(-\frac{47}{2}\right)^{2}
Divide -47, the coefficient of the x term, by 2 to get -\frac{47}{2}. Then add the square of -\frac{47}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
y^{2}-47y+\frac{2209}{4}=160+\frac{2209}{4}
Square -\frac{47}{2} by squaring both the numerator and the denominator of the fraction.
y^{2}-47y+\frac{2209}{4}=\frac{2849}{4}
Add 160 to \frac{2209}{4}.
\left(y-\frac{47}{2}\right)^{2}=\frac{2849}{4}
Factor y^{2}-47y+\frac{2209}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(y-\frac{47}{2}\right)^{2}}=\sqrt{\frac{2849}{4}}
Take the square root of both sides of the equation.
y-\frac{47}{2}=\frac{\sqrt{2849}}{2} y-\frac{47}{2}=-\frac{\sqrt{2849}}{2}
Simplify.
y=\frac{\sqrt{2849}+47}{2} y=\frac{47-\sqrt{2849}}{2}
Add \frac{47}{2} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}