Skip to main content
Solve for y
Tick mark Image

Similar Problems from Web Search

Share

y^{2}-3y+32=0
Combine -2y and -y to get -3y.
y=\frac{-\left(-3\right)±\sqrt{\left(-3\right)^{2}-4\times 32}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, -3 for b, and 32 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
y=\frac{-\left(-3\right)±\sqrt{9-4\times 32}}{2}
Square -3.
y=\frac{-\left(-3\right)±\sqrt{9-128}}{2}
Multiply -4 times 32.
y=\frac{-\left(-3\right)±\sqrt{-119}}{2}
Add 9 to -128.
y=\frac{-\left(-3\right)±\sqrt{119}i}{2}
Take the square root of -119.
y=\frac{3±\sqrt{119}i}{2}
The opposite of -3 is 3.
y=\frac{3+\sqrt{119}i}{2}
Now solve the equation y=\frac{3±\sqrt{119}i}{2} when ± is plus. Add 3 to i\sqrt{119}.
y=\frac{-\sqrt{119}i+3}{2}
Now solve the equation y=\frac{3±\sqrt{119}i}{2} when ± is minus. Subtract i\sqrt{119} from 3.
y=\frac{3+\sqrt{119}i}{2} y=\frac{-\sqrt{119}i+3}{2}
The equation is now solved.
y^{2}-3y+32=0
Combine -2y and -y to get -3y.
y^{2}-3y=-32
Subtract 32 from both sides. Anything subtracted from zero gives its negation.
y^{2}-3y+\left(-\frac{3}{2}\right)^{2}=-32+\left(-\frac{3}{2}\right)^{2}
Divide -3, the coefficient of the x term, by 2 to get -\frac{3}{2}. Then add the square of -\frac{3}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
y^{2}-3y+\frac{9}{4}=-32+\frac{9}{4}
Square -\frac{3}{2} by squaring both the numerator and the denominator of the fraction.
y^{2}-3y+\frac{9}{4}=-\frac{119}{4}
Add -32 to \frac{9}{4}.
\left(y-\frac{3}{2}\right)^{2}=-\frac{119}{4}
Factor y^{2}-3y+\frac{9}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(y-\frac{3}{2}\right)^{2}}=\sqrt{-\frac{119}{4}}
Take the square root of both sides of the equation.
y-\frac{3}{2}=\frac{\sqrt{119}i}{2} y-\frac{3}{2}=-\frac{\sqrt{119}i}{2}
Simplify.
y=\frac{3+\sqrt{119}i}{2} y=\frac{-\sqrt{119}i+3}{2}
Add \frac{3}{2} to both sides of the equation.