Solve for y
y=\sqrt{7}+5\approx 7.645751311
y=5-\sqrt{7}\approx 2.354248689
Graph
Share
Copied to clipboard
y^{2}-10y=-18
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
y^{2}-10y-\left(-18\right)=-18-\left(-18\right)
Add 18 to both sides of the equation.
y^{2}-10y-\left(-18\right)=0
Subtracting -18 from itself leaves 0.
y^{2}-10y+18=0
Subtract -18 from 0.
y=\frac{-\left(-10\right)±\sqrt{\left(-10\right)^{2}-4\times 18}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, -10 for b, and 18 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
y=\frac{-\left(-10\right)±\sqrt{100-4\times 18}}{2}
Square -10.
y=\frac{-\left(-10\right)±\sqrt{100-72}}{2}
Multiply -4 times 18.
y=\frac{-\left(-10\right)±\sqrt{28}}{2}
Add 100 to -72.
y=\frac{-\left(-10\right)±2\sqrt{7}}{2}
Take the square root of 28.
y=\frac{10±2\sqrt{7}}{2}
The opposite of -10 is 10.
y=\frac{2\sqrt{7}+10}{2}
Now solve the equation y=\frac{10±2\sqrt{7}}{2} when ± is plus. Add 10 to 2\sqrt{7}.
y=\sqrt{7}+5
Divide 10+2\sqrt{7} by 2.
y=\frac{10-2\sqrt{7}}{2}
Now solve the equation y=\frac{10±2\sqrt{7}}{2} when ± is minus. Subtract 2\sqrt{7} from 10.
y=5-\sqrt{7}
Divide 10-2\sqrt{7} by 2.
y=\sqrt{7}+5 y=5-\sqrt{7}
The equation is now solved.
y^{2}-10y=-18
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
y^{2}-10y+\left(-5\right)^{2}=-18+\left(-5\right)^{2}
Divide -10, the coefficient of the x term, by 2 to get -5. Then add the square of -5 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
y^{2}-10y+25=-18+25
Square -5.
y^{2}-10y+25=7
Add -18 to 25.
\left(y-5\right)^{2}=7
Factor y^{2}-10y+25. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(y-5\right)^{2}}=\sqrt{7}
Take the square root of both sides of the equation.
y-5=\sqrt{7} y-5=-\sqrt{7}
Simplify.
y=\sqrt{7}+5 y=5-\sqrt{7}
Add 5 to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}