Skip to main content
Solve for y
Tick mark Image
Graph

Similar Problems from Web Search

Share

y^{2}-9y=14
Subtract 9y from both sides.
y^{2}-9y-14=0
Subtract 14 from both sides.
y=\frac{-\left(-9\right)±\sqrt{\left(-9\right)^{2}-4\left(-14\right)}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, -9 for b, and -14 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
y=\frac{-\left(-9\right)±\sqrt{81-4\left(-14\right)}}{2}
Square -9.
y=\frac{-\left(-9\right)±\sqrt{81+56}}{2}
Multiply -4 times -14.
y=\frac{-\left(-9\right)±\sqrt{137}}{2}
Add 81 to 56.
y=\frac{9±\sqrt{137}}{2}
The opposite of -9 is 9.
y=\frac{\sqrt{137}+9}{2}
Now solve the equation y=\frac{9±\sqrt{137}}{2} when ± is plus. Add 9 to \sqrt{137}.
y=\frac{9-\sqrt{137}}{2}
Now solve the equation y=\frac{9±\sqrt{137}}{2} when ± is minus. Subtract \sqrt{137} from 9.
y=\frac{\sqrt{137}+9}{2} y=\frac{9-\sqrt{137}}{2}
The equation is now solved.
y^{2}-9y=14
Subtract 9y from both sides.
y^{2}-9y+\left(-\frac{9}{2}\right)^{2}=14+\left(-\frac{9}{2}\right)^{2}
Divide -9, the coefficient of the x term, by 2 to get -\frac{9}{2}. Then add the square of -\frac{9}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
y^{2}-9y+\frac{81}{4}=14+\frac{81}{4}
Square -\frac{9}{2} by squaring both the numerator and the denominator of the fraction.
y^{2}-9y+\frac{81}{4}=\frac{137}{4}
Add 14 to \frac{81}{4}.
\left(y-\frac{9}{2}\right)^{2}=\frac{137}{4}
Factor y^{2}-9y+\frac{81}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(y-\frac{9}{2}\right)^{2}}=\sqrt{\frac{137}{4}}
Take the square root of both sides of the equation.
y-\frac{9}{2}=\frac{\sqrt{137}}{2} y-\frac{9}{2}=-\frac{\sqrt{137}}{2}
Simplify.
y=\frac{\sqrt{137}+9}{2} y=\frac{9-\sqrt{137}}{2}
Add \frac{9}{2} to both sides of the equation.