Solve for y
y = \frac{\sqrt{137} + 9}{2} \approx 10.352349955
y=\frac{9-\sqrt{137}}{2}\approx -1.352349955
Graph
Share
Copied to clipboard
y^{2}-9y=14
Subtract 9y from both sides.
y^{2}-9y-14=0
Subtract 14 from both sides.
y=\frac{-\left(-9\right)±\sqrt{\left(-9\right)^{2}-4\left(-14\right)}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, -9 for b, and -14 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
y=\frac{-\left(-9\right)±\sqrt{81-4\left(-14\right)}}{2}
Square -9.
y=\frac{-\left(-9\right)±\sqrt{81+56}}{2}
Multiply -4 times -14.
y=\frac{-\left(-9\right)±\sqrt{137}}{2}
Add 81 to 56.
y=\frac{9±\sqrt{137}}{2}
The opposite of -9 is 9.
y=\frac{\sqrt{137}+9}{2}
Now solve the equation y=\frac{9±\sqrt{137}}{2} when ± is plus. Add 9 to \sqrt{137}.
y=\frac{9-\sqrt{137}}{2}
Now solve the equation y=\frac{9±\sqrt{137}}{2} when ± is minus. Subtract \sqrt{137} from 9.
y=\frac{\sqrt{137}+9}{2} y=\frac{9-\sqrt{137}}{2}
The equation is now solved.
y^{2}-9y=14
Subtract 9y from both sides.
y^{2}-9y+\left(-\frac{9}{2}\right)^{2}=14+\left(-\frac{9}{2}\right)^{2}
Divide -9, the coefficient of the x term, by 2 to get -\frac{9}{2}. Then add the square of -\frac{9}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
y^{2}-9y+\frac{81}{4}=14+\frac{81}{4}
Square -\frac{9}{2} by squaring both the numerator and the denominator of the fraction.
y^{2}-9y+\frac{81}{4}=\frac{137}{4}
Add 14 to \frac{81}{4}.
\left(y-\frac{9}{2}\right)^{2}=\frac{137}{4}
Factor y^{2}-9y+\frac{81}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(y-\frac{9}{2}\right)^{2}}=\sqrt{\frac{137}{4}}
Take the square root of both sides of the equation.
y-\frac{9}{2}=\frac{\sqrt{137}}{2} y-\frac{9}{2}=-\frac{\sqrt{137}}{2}
Simplify.
y=\frac{\sqrt{137}+9}{2} y=\frac{9-\sqrt{137}}{2}
Add \frac{9}{2} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}