Skip to main content
Solve for y
Tick mark Image
Graph

Similar Problems from Web Search

Share

y^{2}-10y=3
Subtract 10y from both sides.
y^{2}-10y-3=0
Subtract 3 from both sides.
y=\frac{-\left(-10\right)±\sqrt{\left(-10\right)^{2}-4\left(-3\right)}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, -10 for b, and -3 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
y=\frac{-\left(-10\right)±\sqrt{100-4\left(-3\right)}}{2}
Square -10.
y=\frac{-\left(-10\right)±\sqrt{100+12}}{2}
Multiply -4 times -3.
y=\frac{-\left(-10\right)±\sqrt{112}}{2}
Add 100 to 12.
y=\frac{-\left(-10\right)±4\sqrt{7}}{2}
Take the square root of 112.
y=\frac{10±4\sqrt{7}}{2}
The opposite of -10 is 10.
y=\frac{4\sqrt{7}+10}{2}
Now solve the equation y=\frac{10±4\sqrt{7}}{2} when ± is plus. Add 10 to 4\sqrt{7}.
y=2\sqrt{7}+5
Divide 10+4\sqrt{7} by 2.
y=\frac{10-4\sqrt{7}}{2}
Now solve the equation y=\frac{10±4\sqrt{7}}{2} when ± is minus. Subtract 4\sqrt{7} from 10.
y=5-2\sqrt{7}
Divide 10-4\sqrt{7} by 2.
y=2\sqrt{7}+5 y=5-2\sqrt{7}
The equation is now solved.
y^{2}-10y=3
Subtract 10y from both sides.
y^{2}-10y+\left(-5\right)^{2}=3+\left(-5\right)^{2}
Divide -10, the coefficient of the x term, by 2 to get -5. Then add the square of -5 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
y^{2}-10y+25=3+25
Square -5.
y^{2}-10y+25=28
Add 3 to 25.
\left(y-5\right)^{2}=28
Factor y^{2}-10y+25. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(y-5\right)^{2}}=\sqrt{28}
Take the square root of both sides of the equation.
y-5=2\sqrt{7} y-5=-2\sqrt{7}
Simplify.
y=2\sqrt{7}+5 y=5-2\sqrt{7}
Add 5 to both sides of the equation.