Solve for x
x=y^{2}+14
Solve for y (complex solution)
y=-\sqrt{x-14}
y=\sqrt{x-14}
Solve for y
y=\sqrt{x-14}
y=-\sqrt{x-14}\text{, }x\geq 14
Graph
Share
Copied to clipboard
y^{2}+x+15=3+2x-2
Use the distributive property to multiply 2 by x-1.
y^{2}+x+15=1+2x
Subtract 2 from 3 to get 1.
y^{2}+x+15-2x=1
Subtract 2x from both sides.
y^{2}-x+15=1
Combine x and -2x to get -x.
-x+15=1-y^{2}
Subtract y^{2} from both sides.
-x=1-y^{2}-15
Subtract 15 from both sides.
-x=-14-y^{2}
Subtract 15 from 1 to get -14.
-x=-y^{2}-14
The equation is in standard form.
\frac{-x}{-1}=\frac{-y^{2}-14}{-1}
Divide both sides by -1.
x=\frac{-y^{2}-14}{-1}
Dividing by -1 undoes the multiplication by -1.
x=y^{2}+14
Divide -14-y^{2} by -1.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}