Solve for p
\left\{\begin{matrix}p=-\frac{x}{y}\text{, }&y\neq 0\\p\in \mathrm{R}\text{, }&t=0\text{ or }\left(x=0\text{ and }y=0\right)\end{matrix}\right.
Solve for t
\left\{\begin{matrix}\\t=0\text{, }&\text{unconditionally}\\t\in \mathrm{R}\text{, }&x=-py\end{matrix}\right.
Share
Copied to clipboard
xt+pyt=\frac{\mathrm{d}}{\mathrm{d}x}(y)t
Swap sides so that all variable terms are on the left hand side.
pyt=\frac{\mathrm{d}}{\mathrm{d}x}(y)t-xt
Subtract xt from both sides.
typ=-tx
The equation is in standard form.
\frac{typ}{ty}=-\frac{tx}{ty}
Divide both sides by yt.
p=-\frac{tx}{ty}
Dividing by yt undoes the multiplication by yt.
p=-\frac{x}{y}
Divide -xt by yt.
\frac{\mathrm{d}}{\mathrm{d}x}(y)t-xt=pyt
Subtract xt from both sides.
\frac{\mathrm{d}}{\mathrm{d}x}(y)t-xt-pyt=0
Subtract pyt from both sides.
t\frac{\mathrm{d}}{\mathrm{d}x}(y)-pty-tx=0
Reorder the terms.
\left(\frac{\mathrm{d}}{\mathrm{d}x}(y)-py-x\right)t=0
Combine all terms containing t.
\left(-x-py\right)t=0
The equation is in standard form.
t=0
Divide 0 by -py-x.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}