Solve for x
x=x_{1}-iy+iy_{1}
Solve for x_1
x_{1}=x+iy-iy_{1}
Share
Copied to clipboard
y=y_{1}+ix-ix_{1}
Use the distributive property to multiply x-x_{1} by i.
y_{1}+ix-ix_{1}=y
Swap sides so that all variable terms are on the left hand side.
ix-ix_{1}=y-y_{1}
Subtract y_{1} from both sides.
ix=y-y_{1}-\left(-ix_{1}\right)
Subtract -ix_{1} from both sides.
ix=y-y_{1}+ix_{1}
Multiply -1 and -i to get i.
ix=ix_{1}+y-y_{1}
The equation is in standard form.
\frac{ix}{i}=\frac{ix_{1}+y-y_{1}}{i}
Divide both sides by i.
x=\frac{ix_{1}+y-y_{1}}{i}
Dividing by i undoes the multiplication by i.
x=x_{1}-iy+iy_{1}
Divide y-y_{1}+ix_{1} by i.
y=y_{1}+ix-ix_{1}
Use the distributive property to multiply x-x_{1} by i.
y_{1}+ix-ix_{1}=y
Swap sides so that all variable terms are on the left hand side.
ix-ix_{1}=y-y_{1}
Subtract y_{1} from both sides.
-ix_{1}=y-y_{1}-ix
Subtract ix from both sides.
-ix_{1}=-ix+y-y_{1}
Reorder the terms.
\frac{-ix_{1}}{-i}=\frac{-ix+y-y_{1}}{-i}
Divide both sides by -i.
x_{1}=\frac{-ix+y-y_{1}}{-i}
Dividing by -i undoes the multiplication by -i.
x_{1}=x+iy-iy_{1}
Divide -ix+y-y_{1} by -i.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}