Solve for t
\left\{\begin{matrix}t=-\frac{2\left(y_{0}-y\right)}{v+v_{o}}\text{, }&v\neq -v_{o}\\t\in \mathrm{R}\text{, }&y=y_{0}\text{ and }v=-v_{o}\end{matrix}\right.
Solve for v
\left\{\begin{matrix}v=-\frac{tv_{o}+2y_{0}-2y}{t}\text{, }&t\neq 0\\v\in \mathrm{R}\text{, }&y=y_{0}\text{ and }t=0\end{matrix}\right.
Graph
Share
Copied to clipboard
y=y_{0}+\left(\frac{1}{2}v+\frac{1}{2}v_{o}\right)t
Use the distributive property to multiply \frac{1}{2} by v+v_{o}.
y=y_{0}+\frac{1}{2}vt+\frac{1}{2}v_{o}t
Use the distributive property to multiply \frac{1}{2}v+\frac{1}{2}v_{o} by t.
y_{0}+\frac{1}{2}vt+\frac{1}{2}v_{o}t=y
Swap sides so that all variable terms are on the left hand side.
\frac{1}{2}vt+\frac{1}{2}v_{o}t=y-y_{0}
Subtract y_{0} from both sides.
\left(\frac{1}{2}v+\frac{1}{2}v_{o}\right)t=y-y_{0}
Combine all terms containing t.
\frac{v+v_{o}}{2}t=y-y_{0}
The equation is in standard form.
\frac{2\times \frac{v+v_{o}}{2}t}{v+v_{o}}=\frac{2\left(y-y_{0}\right)}{v+v_{o}}
Divide both sides by \frac{1}{2}v+\frac{1}{2}v_{o}.
t=\frac{2\left(y-y_{0}\right)}{v+v_{o}}
Dividing by \frac{1}{2}v+\frac{1}{2}v_{o} undoes the multiplication by \frac{1}{2}v+\frac{1}{2}v_{o}.
y=y_{0}+\left(\frac{1}{2}v+\frac{1}{2}v_{o}\right)t
Use the distributive property to multiply \frac{1}{2} by v+v_{o}.
y=y_{0}+\frac{1}{2}vt+\frac{1}{2}v_{o}t
Use the distributive property to multiply \frac{1}{2}v+\frac{1}{2}v_{o} by t.
y_{0}+\frac{1}{2}vt+\frac{1}{2}v_{o}t=y
Swap sides so that all variable terms are on the left hand side.
\frac{1}{2}vt+\frac{1}{2}v_{o}t=y-y_{0}
Subtract y_{0} from both sides.
\frac{1}{2}vt=y-y_{0}-\frac{1}{2}v_{o}t
Subtract \frac{1}{2}v_{o}t from both sides.
\frac{t}{2}v=-\frac{tv_{o}}{2}+y-y_{0}
The equation is in standard form.
\frac{2\times \frac{t}{2}v}{t}=\frac{2\left(-\frac{tv_{o}}{2}+y-y_{0}\right)}{t}
Divide both sides by \frac{1}{2}t.
v=\frac{2\left(-\frac{tv_{o}}{2}+y-y_{0}\right)}{t}
Dividing by \frac{1}{2}t undoes the multiplication by \frac{1}{2}t.
v=\frac{2y-2y_{0}-tv_{o}}{t}
Divide y-\frac{v_{o}t}{2}-y_{0} by \frac{1}{2}t.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}