Skip to main content
Solve for t
Tick mark Image
Solve for v
Tick mark Image
Graph

Similar Problems from Web Search

Share

y=y_{0}+\left(\frac{1}{2}v+\frac{1}{2}v_{o}\right)t
Use the distributive property to multiply \frac{1}{2} by v+v_{o}.
y=y_{0}+\frac{1}{2}vt+\frac{1}{2}v_{o}t
Use the distributive property to multiply \frac{1}{2}v+\frac{1}{2}v_{o} by t.
y_{0}+\frac{1}{2}vt+\frac{1}{2}v_{o}t=y
Swap sides so that all variable terms are on the left hand side.
\frac{1}{2}vt+\frac{1}{2}v_{o}t=y-y_{0}
Subtract y_{0} from both sides.
\left(\frac{1}{2}v+\frac{1}{2}v_{o}\right)t=y-y_{0}
Combine all terms containing t.
\frac{v+v_{o}}{2}t=y-y_{0}
The equation is in standard form.
\frac{2\times \frac{v+v_{o}}{2}t}{v+v_{o}}=\frac{2\left(y-y_{0}\right)}{v+v_{o}}
Divide both sides by \frac{1}{2}v+\frac{1}{2}v_{o}.
t=\frac{2\left(y-y_{0}\right)}{v+v_{o}}
Dividing by \frac{1}{2}v+\frac{1}{2}v_{o} undoes the multiplication by \frac{1}{2}v+\frac{1}{2}v_{o}.
y=y_{0}+\left(\frac{1}{2}v+\frac{1}{2}v_{o}\right)t
Use the distributive property to multiply \frac{1}{2} by v+v_{o}.
y=y_{0}+\frac{1}{2}vt+\frac{1}{2}v_{o}t
Use the distributive property to multiply \frac{1}{2}v+\frac{1}{2}v_{o} by t.
y_{0}+\frac{1}{2}vt+\frac{1}{2}v_{o}t=y
Swap sides so that all variable terms are on the left hand side.
\frac{1}{2}vt+\frac{1}{2}v_{o}t=y-y_{0}
Subtract y_{0} from both sides.
\frac{1}{2}vt=y-y_{0}-\frac{1}{2}v_{o}t
Subtract \frac{1}{2}v_{o}t from both sides.
\frac{t}{2}v=-\frac{tv_{o}}{2}+y-y_{0}
The equation is in standard form.
\frac{2\times \frac{t}{2}v}{t}=\frac{2\left(-\frac{tv_{o}}{2}+y-y_{0}\right)}{t}
Divide both sides by \frac{1}{2}t.
v=\frac{2\left(-\frac{tv_{o}}{2}+y-y_{0}\right)}{t}
Dividing by \frac{1}{2}t undoes the multiplication by \frac{1}{2}t.
v=\frac{2y-2y_{0}-tv_{o}}{t}
Divide y-\frac{v_{o}t}{2}-y_{0} by \frac{1}{2}t.