Solve for x (complex solution)
\left\{\begin{matrix}x=\frac{1}{y+35}\text{, }&y\neq -35\\x\in \mathrm{C}\text{, }&y=0\end{matrix}\right.
Solve for x
\left\{\begin{matrix}x=\frac{1}{y+35}\text{, }&y\neq -35\\x\in \mathrm{R}\text{, }&y=0\end{matrix}\right.
Solve for y
\left\{\begin{matrix}\\y=0\text{, }&\text{unconditionally}\\y=-35+\frac{1}{x}\text{, }&x\neq 0\end{matrix}\right.
Graph
Share
Copied to clipboard
y=xy^{2}-5xy+5\left(2xy+6xy\right)
Use the distributive property to multiply xy by y-5.
y=xy^{2}-5xy+5\times 8xy
Combine 2xy and 6xy to get 8xy.
y=xy^{2}-5xy+40xy
Multiply 5 and 8 to get 40.
y=xy^{2}+35xy
Combine -5xy and 40xy to get 35xy.
xy^{2}+35xy=y
Swap sides so that all variable terms are on the left hand side.
\left(y^{2}+35y\right)x=y
Combine all terms containing x.
\frac{\left(y^{2}+35y\right)x}{y^{2}+35y}=\frac{y}{y^{2}+35y}
Divide both sides by y^{2}+35y.
x=\frac{y}{y^{2}+35y}
Dividing by y^{2}+35y undoes the multiplication by y^{2}+35y.
x=\frac{1}{y+35}
Divide y by y^{2}+35y.
y=xy^{2}-5xy+5\left(2xy+6xy\right)
Use the distributive property to multiply xy by y-5.
y=xy^{2}-5xy+5\times 8xy
Combine 2xy and 6xy to get 8xy.
y=xy^{2}-5xy+40xy
Multiply 5 and 8 to get 40.
y=xy^{2}+35xy
Combine -5xy and 40xy to get 35xy.
xy^{2}+35xy=y
Swap sides so that all variable terms are on the left hand side.
\left(y^{2}+35y\right)x=y
Combine all terms containing x.
\frac{\left(y^{2}+35y\right)x}{y^{2}+35y}=\frac{y}{y^{2}+35y}
Divide both sides by y^{2}+35y.
x=\frac{y}{y^{2}+35y}
Dividing by y^{2}+35y undoes the multiplication by y^{2}+35y.
x=\frac{1}{y+35}
Divide y by y^{2}+35y.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}