Solve for a (complex solution)
a=\left(|-x\ln(x)+y|\right)^{\frac{Re(x)-iIm(x)}{\left(Re(x)\right)^{2}+\left(Im(x)\right)^{2}}}e^{\frac{Im(x)arg(-\left(-x\ln(x)+y\right))+iRe(x)arg(-\left(-x\ln(x)+y\right))}{\left(Re(x)\right)^{2}+\left(Im(x)\right)^{2}}-\frac{2\pi n_{1}iRe(x)}{\left(Re(x)\right)^{2}+\left(Im(x)\right)^{2}}-\frac{2\pi n_{1}Im(x)}{\left(Re(x)\right)^{2}+\left(Im(x)\right)^{2}}}
n_{1}\in \mathrm{Z}
x\neq 0
Solve for a
\left\{\begin{matrix}a=\left(x\ln(x)-y\right)^{\frac{1}{x}}\text{, }&\left(Numerator(x)\text{bmod}2=1\text{ and }Denominator(x)\text{bmod}2=1\text{ and }x>0\text{ and }y\neq x\ln(x)\text{ and }\left(x\ln(x)-y\right)^{\frac{1}{x}}\neq 0\right)\text{ or }\left(\left(x\ln(x)-y\right)^{\frac{1}{x}}>0\text{ and }y>x\ln(x)\text{ and }Numerator(x)\text{bmod}2=1\text{ and }-\left(-x\ln(x)+y\right)\geq 0\text{ and }x>0\right)\text{ or }\left(\left(x\ln(x)-y\right)^{\frac{1}{x}}>0\text{ and }y<x\ln(x)\text{ and }-\left(-x\ln(x)+y\right)\geq 0\text{ and }x>0\right)\text{ or }\left(y=x\ln(x)\text{ and }x>0\right)\text{ or }\left(\left(x\ln(x)-y\right)^{\frac{1}{x}}<0\text{ and }y>x\ln(x)\text{ and }Numerator(x)\text{bmod}2=1\text{ and }-\left(-x\ln(x)+y\right)\geq 0\text{ and }x>0\text{ and }Denominator(x)\text{bmod}2=1\right)\text{ or }\left(\left(x\ln(x)-y\right)^{\frac{1}{x}}<0\text{ and }y<x\ln(x)\text{ and }-\left(-x\ln(x)+y\right)\geq 0\text{ and }x>0\text{ and }Denominator(x)\text{bmod}2=1\right)\\a=-\left(x\ln(x)-y\right)^{\frac{1}{x}}\text{, }&\left(x>0\text{ and }Numerator(x)\text{bmod}2=0\text{ and }Numerator(x)\text{bmod}2=1\text{ and }Denominator(x)\text{bmod}2=1\text{ and }y\neq x\ln(x)\text{ and }\left(x\ln(x)-y\right)^{\frac{1}{x}}\neq 0\right)\text{ or }\left(x>0\text{ and }\left(x\ln(x)-y\right)^{\frac{1}{x}}<0\text{ and }Numerator(x)\text{bmod}2=0\text{ and }-\left(-x\ln(x)+y\right)\geq 0\text{ and }y<x\ln(x)\right)\text{ or }\left(y>x\ln(x)\text{ and }Numerator(x)\text{bmod}2=1\text{ and }x>0\text{ and }\left(x\ln(x)-y\right)^{\frac{1}{x}}<0\text{ and }Numerator(x)\text{bmod}2=0\text{ and }-\left(-x\ln(x)+y\right)\geq 0\right)\text{ or }\left(Numerator(x)\text{bmod}2=0\text{ and }y=x\ln(x)\text{ and }x>0\right)\text{ or }\left(x>0\text{ and }\left(x\ln(x)-y\right)^{\frac{1}{x}}>0\text{ and }Numerator(x)\text{bmod}2=0\text{ and }-\left(-x\ln(x)+y\right)\geq 0\text{ and }Denominator(x)\text{bmod}2=1\text{ and }y<x\ln(x)\right)\end{matrix}\right.
Graph
Share
Copied to clipboard
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}