Solve for b (complex solution)
\left\{\begin{matrix}b=\frac{y-x^{p}}{xy}\text{, }&y\neq 0\text{ and }x\neq 0\\b\in \mathrm{C}\text{, }&y=0\text{ and }x=0\text{ and }p\neq 0\end{matrix}\right.
Solve for b
\left\{\begin{matrix}b=\frac{y-x^{p}}{xy}\text{, }&y\neq 0\text{ and }\left(x>0\text{ or }Denominator(p)\text{bmod}2=1\right)\text{ and }x\neq 0\\b\in \mathrm{R}\text{, }&y=0\text{ and }x=0\text{ and }p>0\end{matrix}\right.
Solve for p (complex solution)
\left\{\begin{matrix}p=\log_{x}\left(y\left(1-bx\right)\right)+\frac{2i\pi n_{1}}{\ln(x)}\text{, }n_{1}\in \mathrm{Z}\text{, }&\left(b=0\text{ or }x\neq \frac{1}{b}\right)\text{ and }y\neq 0\text{ and }x\neq 1\text{ and }x\neq 0\\p\in \mathrm{C}\text{, }&\left(y=0\text{ and }x=0\right)\text{ or }\left(x=1\text{ and }y=1\text{ and }b=0\right)\text{ or }\left(x=1\text{ and }y=\frac{1}{1-b}\text{ and }b\neq 1\right)\end{matrix}\right.
Solve for p
\left\{\begin{matrix}p=\log_{x}\left(y\left(1-bx\right)\right)\text{, }&\left(y>0\text{ and }x<\frac{1}{b}\text{ and }x\neq 1\text{ and }x>0\text{ and }b>0\right)\text{ or }\left(y>0\text{ and }b=0\text{ and }x\neq 1\text{ and }x>0\right)\text{ or }\left(y>0\text{ and }x>\frac{1}{b}\text{ and }b<0\text{ and }x\neq 1\text{ and }x>0\right)\text{ or }\left(y<0\text{ and }x>\frac{1}{b}\text{ and }b>0\text{ and }x\neq 1\text{ and }x>0\right)\text{ or }\left(y<0\text{ and }x<\frac{1}{b}\text{ and }b<0\text{ and }x\neq 1\text{ and }x>0\right)\\p\in \mathrm{R}\text{, }&\left(x=1\text{ and }y=1\text{ and }b=0\right)\text{ or }\left(x=1\text{ and }y=\frac{1}{1-b}\text{ and }b\neq 1\right)\text{ or }\left(x=-1\text{ and }y=-1\text{ and }b=0\text{ and }Denominator(p)\text{bmod}2=1\text{ and }Numerator(p)\text{bmod}2=1\right)\text{ or }\left(x=-1\text{ and }y=-\frac{1}{b+1}\text{ and }b\neq -1\text{ and }Denominator(p)\text{bmod}2=1\text{ and }Numerator(p)\text{bmod}2=1\right)\\p>0\text{, }&x=0\text{ and }y=0\end{matrix}\right.
Graph
Share
Copied to clipboard
x^{p}+bxy=y
Swap sides so that all variable terms are on the left hand side.
bxy=y-x^{p}
Subtract x^{p} from both sides.
xyb=y-x^{p}
The equation is in standard form.
\frac{xyb}{xy}=\frac{y-x^{p}}{xy}
Divide both sides by xy.
b=\frac{y-x^{p}}{xy}
Dividing by xy undoes the multiplication by xy.
x^{p}+bxy=y
Swap sides so that all variable terms are on the left hand side.
bxy=y-x^{p}
Subtract x^{p} from both sides.
xyb=y-x^{p}
The equation is in standard form.
\frac{xyb}{xy}=\frac{y-x^{p}}{xy}
Divide both sides by xy.
b=\frac{y-x^{p}}{xy}
Dividing by xy undoes the multiplication by xy.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}