Solve for y (complex solution)
y=\frac{x^{2}\left(2x^{2}+1\right)}{1-x^{4}}
x\neq -1\text{ and }x\neq i\text{ and }x\neq -i\text{ and }x\neq 1
Solve for y
y=\frac{x^{2}\left(2x^{2}+1\right)}{1-x^{4}}
|x|\neq 1
Solve for x (complex solution)
\left\{\begin{matrix}x=\frac{i\left(y+2\right)^{-\frac{1}{2}}\sqrt{2\sqrt{4y^{2}+8y+1}+2}}{2}\text{; }x=-\frac{i\left(y+2\right)^{-\frac{1}{2}}\sqrt{2\sqrt{4y^{2}+8y+1}+2}}{2}\text{; }x=-\frac{i\left(y+2\right)^{-\frac{1}{2}}\sqrt{-2\sqrt{4y^{2}+8y+1}+2}}{2}\text{; }x=\frac{i\left(y+2\right)^{-\frac{1}{2}}\sqrt{-2\sqrt{4y^{2}+8y+1}+2}}{2}\text{, }&y\neq -2\\x=-\sqrt{2}i\approx -0-1.414213562i\text{; }x=\sqrt{2}i\approx 1.414213562i\text{, }&y=-2\end{matrix}\right.
Solve for x
\left\{\begin{matrix}x=-\frac{\sqrt{\frac{2\left(\sqrt{4y^{2}+8y+1}-1\right)}{y+2}}}{2}\text{; }x=\frac{\sqrt{\frac{2\left(\sqrt{4y^{2}+8y+1}-1\right)}{y+2}}}{2}\text{, }&y\geq 0\\x=-\frac{\sqrt{-\frac{2\left(\sqrt{4y^{2}+8y+1}+1\right)}{y+2}}}{2}\text{; }x=\frac{\sqrt{-\frac{2\left(\sqrt{4y^{2}+8y+1}+1\right)}{y+2}}}{2}\text{, }&y<-2\end{matrix}\right.
Graph
Share
Copied to clipboard
y=x^{2}+x^{4}\left(y+2\right)
To raise a power to another power, multiply the exponents. Multiply 2 and 2 to get 4.
y=x^{2}+x^{4}y+2x^{4}
Use the distributive property to multiply x^{4} by y+2.
y-x^{4}y=x^{2}+2x^{4}
Subtract x^{4}y from both sides.
-yx^{4}+y=2x^{4}+x^{2}
Reorder the terms.
\left(-x^{4}+1\right)y=2x^{4}+x^{2}
Combine all terms containing y.
\left(1-x^{4}\right)y=2x^{4}+x^{2}
The equation is in standard form.
\frac{\left(1-x^{4}\right)y}{1-x^{4}}=\frac{2x^{4}+x^{2}}{1-x^{4}}
Divide both sides by 1-x^{4}.
y=\frac{2x^{4}+x^{2}}{1-x^{4}}
Dividing by 1-x^{4} undoes the multiplication by 1-x^{4}.
y=\frac{x^{2}\left(2x^{2}+1\right)}{1-x^{4}}
Divide 2x^{4}+x^{2} by 1-x^{4}.
y=x^{2}+x^{4}\left(y+2\right)
To raise a power to another power, multiply the exponents. Multiply 2 and 2 to get 4.
y=x^{2}+x^{4}y+2x^{4}
Use the distributive property to multiply x^{4} by y+2.
y-x^{4}y=x^{2}+2x^{4}
Subtract x^{4}y from both sides.
-yx^{4}+y=2x^{4}+x^{2}
Reorder the terms.
\left(-x^{4}+1\right)y=2x^{4}+x^{2}
Combine all terms containing y.
\left(1-x^{4}\right)y=2x^{4}+x^{2}
The equation is in standard form.
\frac{\left(1-x^{4}\right)y}{1-x^{4}}=\frac{2x^{4}+x^{2}}{1-x^{4}}
Divide both sides by 1-x^{4}.
y=\frac{2x^{4}+x^{2}}{1-x^{4}}
Dividing by 1-x^{4} undoes the multiplication by 1-x^{4}.
y=\frac{x^{2}\left(2x^{2}+1\right)}{1-x^{4}}
Divide 2x^{4}+x^{2} by 1-x^{4}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}